Math, asked by spoorthi200526, 4 months ago

Hey!!

The wheels of a car are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travelling at a speed of 66 km per hour?​

Answers

Answered by AestheticSoul
25

Given :

  • Diameter of a wheel of a car = 80 cm
  • The speed of the car = 66 km/hr
  • Time in which the car covers a particular distance at a speed of 66 km/hr = 10 minutes

To find :

  • Number of complete revolutions the car makes in 10 minutes

Concept Used :

Formula to calculate distance :-

 \boxed{ \sf{ \pmb{ \blue{Distance  =  Speed \times Time}}}} \quad \star

Formula to calculate radius :-

 \boxed{ \sf{ \pmb{ \blue{Radius   = \dfrac{Diameter}{2} }}}} \quad \star

Formula to calculate circumference of circle :-

 \boxed{ \sf{ \pmb{ \blue{Circumference   = 2\pi r}}}} \quad \star

where,

  • Take π = 22/7
  • r = radius

Solution :

Firstly, we will calculate the distance travelled by the car in 10 minutes.

For that we will convert the time from 10 minutes into hrs first.

As we know,

  • 1 min = 1/60 hr

Divide the value by 60 to convert it from minutes into hr.

→ Time = 10 min = 10/60 hr

Using formula,

   \\ \dashrightarrow \quad \sf Distance  =  Speed \times Time

Substituting the given values,

   \\ \dashrightarrow \quad \sf Distance  =  66 \times \dfrac{10}{60}

   \\ \dashrightarrow \quad \sf Distance  =   66 \times \dfrac{1 \not0}{ 6 \not0}

   \\ \dashrightarrow \quad \sf Distance  =    \not66 \times \dfrac{1}{ \not6}

   \\ \dashrightarrow \quad \sf Distance  =    11

   \\ \dashrightarrow \quad \sf  \red{Distance  =    11 \: km}

Now,

Convert the distance covered by the car in 10 minutes from km into cm.

For that, multiply the value by 100000 cm.

→ Distance = 11 km = 11 × 100000 = 1100000 cm.

Now, Calculate the circumference of the wheel. For that firstly, find the radius.

Using formula,

 \\   \dashrightarrow \quad\sf Radius   = \dfrac{Diameter}{2}

Substituting the given values,

 \\   \dashrightarrow \quad\sf Radius   = \dfrac{80}{2}

 \\   \dashrightarrow \quad\sf Radius   = \dfrac{ \not80}{ \not2}

 \\   \dashrightarrow \quad\sf Radius   = 40

 \\   \dashrightarrow \quad\sf  \red{Radius  \:  \: of \:  \: the \:  \: wheel  = 40 \: cm}

Using formula,

  \\ \dashrightarrow \quad  \sf Circumference   = 2\pi r

Substituting the given values,

  \\ \dashrightarrow \quad  \sf Circumference   = 2 \times  \dfrac{22}{7}  \times 40

  \\ \dashrightarrow \quad  \sf Circumference   =  \dfrac{1760}{7} cm \: or \: 251.43 \: cm

Number of revolutions × Circumference = Distance travelled in 10 minutes

  \\ \dashrightarrow \quad  \sf  No.  \:  \: of  \:  \: revolutions \times  \dfrac{1760}{7}  =  11

  \\ \dashrightarrow \quad  \sf  No.  \:  \: of  \:  \: revolutions  =  1100000 \times  \dfrac{7}{1760}

  \\ \dashrightarrow \quad  \sf  No.  \:  \: of  \:  \: revolutions  = 110000 \not0  \times  \dfrac{7}{176 \not0}

  \\ \dashrightarrow \quad  \sf  No.  \:  \: of  \:  \: revolutions  = 110000  \times  \dfrac{7}{176}

  \\ \dashrightarrow \quad  \sf  No.  \:  \: of  \:  \: revolutions  = 4375

  \\ \star \quad  \sf   \blue{No.  \:  \: of  \:  \: revolutions   \:  \: that \:  \: the \:  \: car \:  \: makes \:  \: in \: 10 \: minutes \: = 4375}

Similar questions