Math, asked by chitmankaur157, 1 month ago

Hey there :D please solve this equation :)

Attachments:

Answers

Answered by Anonymous
18

Answer:

Given :-

\leadsto \sf \dfrac{(2x + 5) - (4x - 3)}{(3x - 1) - (2x + 9)} =\: \dfrac{- 54}{69}

To Find :-

  • What is the value of x.

Solution :-

\implies \bf \dfrac{(2x + 5) - (4x - 3)}{(3x - 1) - (2x + 9)} =\: \dfrac{- 54}{69}

\implies \sf \dfrac{2x + 5 - 4x + 3}{3x - 1 - 2x - 9} =\: \dfrac{- \cancel{54}}{\cancel{69}}

\implies \sf \dfrac{2x - 4x + 5 + 3}{3x - 2x - 1 - 9} =\: \dfrac{- 18}{23}

\implies \sf \dfrac{- 2x + 8}{x - 10} =\: \dfrac{- 18}{23}

By doing cross multiplication we get,

\implies \sf 23(- 2x + 8) =\: - 18(x - 10)

\implies \sf - 46x + 184 =\: - 18x + 180

\implies \sf - 46x + 18x =\: 180 - 184

\implies \sf {\cancel{-}} 28x =\: {\cancel{-}} 4

\implies \sf 28x =\: 4

\implies \sf\bold{\red{x =\: \dfrac{4}{28}}}

{\small{\bold{\therefore\: The\: value\: of\: x\: is\: \dfrac{4}{28}\: .}}}

Answered by BrainlyBeyonder
19

Answer in Attachment.

the \: value \: of \: x \: is \:  \frac{4}{28}

\sf \colorbox{orange} {Answer by :- BrainlyBeyonder}

Attachments:
Similar questions