Math, asked by Anonymous, 3 months ago

✬ Hey There!

Evaluate \sf \:  lim_{x \to 0} \: f(x) Where, \sf \: f(x) =  \begin{cases} \sf \dfrac{|x|}{x},   \:  \:  x \neq 0\\   \sf x \\  \sf 0, \: x = 0 \end{cases}

Answers

Answered by diajain01
19

ANSWER⤵️

To find the limit at x=0 we should have

\implies{lim.  \:   f(x ) \:  = \:   lim    \: f(x) \:  lim \:  f (x)}

x→0-. x→0+ x→0

 \implies{lim.   f(x) = lim   \frac{ |x| }{x} =  \frac{ - x}{x}  = -1}</p><p>  </p><p>

x→0- x→0-

since ∣x∣= −x for x < 0

lim \: f(x) = lim \frac{ |x| }{x }  =  \frac{x}{x }  = 1

x→0+ x→0+

since ∣x∣= x for x > 0

Thus,

 \implies \pink {lim \:  f(x) \: not \: equal \: to \: lim \: f(x) }

x→0- x→0+

HENCE, lim f(x) does not exist.

x→0

\blue{BE  \:  \: BRÃÎÑLY}

HOPE IT HELPS✝

Answered by pulakmath007
24

SOLUTION

TO DETERMINE

\displaystyle \sf{ \lim_{x \to 0}  \: f(x)}

Where

\sf  f(x)  = \begin{cases} &amp; \sf{ \:  \:  \:  \displaystyle \sf{} \frac{ |x| }{x}  \:   \:  \: \: when \: x  \ne \: 0} \\  \\ &amp; \sf{  \:  \:  \:  \:  \: 0 \:  \:  \:  \:  \: when \: x = 0}  \end{cases}\\ \\

CONCEPT TO BE IMPLEMENTED

A function f(x) is said to have a limit L at x = a if

\displaystyle \sf{ \lim_{x \to a + }  \: f(x) =\lim_{x \to a  -  }  \: f(x)  = L}

EVALUATION

Here the given function is

\sf  f(x)  = \begin{cases} &amp; \sf{ \:  \:  \:  \displaystyle \sf{} \frac{ |x| }{x}  \:   \:  \: \: when \: x  \ne \: 0} \\  \\ &amp; \sf{  \:  \:  \:  \:  \: 0 \:  \:  \:  \:  \: when \: x = 0}  \end{cases}\\ \\

Now by the definition of modulus

\sf  |x |   = \begin{cases} &amp; \sf{ \:  \:  \:  \: x \:   \:  \: \: when \: x &gt;  0} \\  \\ &amp; \sf{ \:  - x \:  \:  \:  \:  \: when \: x \leqslant  0}  \end{cases}\\ \\

Now

\displaystyle \sf{ \lim_{x \to 0 + }  \: f(x)}

\displaystyle \sf{  = \lim_{x \to 0 + }  \:  \frac{ |x| }{x} }

\displaystyle \sf{  = \lim_{x \to 0 + }  \:  \frac{ x }{x} }

 = 1

Again

\displaystyle \sf{  \lim_{x \to 0 -  }  \:  f(x) }

\displaystyle \sf{  = \lim_{x \to 0  -  }  \:  \frac{ |x| }{x} }

\displaystyle \sf{  = \lim_{x \to 0  -  }  \:  \frac{  - x}{x} }

 =  - 1

\displaystyle \sf{  \therefore \:  \: \lim_{x \to 0 + }  \: f(x)  \ne \: \lim_{x \to0 -  }  \: f(x)  }

\displaystyle \sf{ \therefore \:  \:  \lim_{x \to 0}  \: f(x) \:  \: does \: not \: exists \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions