Math, asked by Anonymous, 3 months ago

✬ Hey there!

Evaluate the given limit's :

\tt \bull \:  \tt \tt \:   lim_{x \rightarrow 0} \bigg(  \csc(x)  -  \cot(x)  \bigg)
\bull \:  \tt \:   lim_{x \rightarrow 0} \bigg( \dfrac{ \cos(x) }{ \pi - x}   \bigg)


Answers

Answered by tennetiraj86
18

Answer:

1)0

2)1/π

Step-by-step explanation:

Using formula:-

  • Cosec X=1/Sin X
  • Cot X=Cos X/Sin X
  • Sin² X+Cos² X=1
  • Sin0°=0
  • Cos0°=1
Attachments:

tennetiraj86: thank you so much
Anonymous: wow nice answer
tennetiraj86: thank you
Answered by PharohX
23

GIVEN :-

\sf\: \sf \sf\: lim_{x \rightarrow 0} \bigg( \cosec(x) - \cot(x) \bigg)

\sf\: lim_{x \rightarrow 0} \bigg( \dfrac{ \cos(x) }{ \pi - x} \bigg)

SOLUTION :-

 \sf \bull 1 \: \: solution

\sf\: \sf \sf\: lim_{x \rightarrow 0} \bigg( \cosec(x) - \cot(x) \bigg)

 = \sf\: \sf \sf\: lim_{x \rightarrow 0} \bigg(  \frac{1}{ \sin(x) }  -  \frac{ \cos(x) }{ \sin(x) } \bigg)</p><p>

 = \sf\: \sf \sf\: lim_{x \rightarrow 0} \bigg(  \frac{1 -  \cos(x) }{ \sin(x) }  \bigg)</p><p>

 \sf \: Formula -

 \green{ \sf \bull \:( 1 -  \cos(x) ) = 2 \sin^{2}  \bigg( \frac{x}{2}  \bigg)}

 \green{ \sf \bull \: sinx = 2 \sin \bigg( \frac{x}{2}  \bigg) .\cos \bigg( \frac{x}{2}  \bigg) }

 = \sf\: \sf \sf\: lim_{x \rightarrow 0} \bigg(  \frac{2 \sin^{2} ( \frac{x}{2} )  }{ 2\sin( \frac{x}{2} ) . \cos( \frac{x}{2} ) }  \bigg)</p><p>

 = \sf\: \sf \sf\: lim_{x \rightarrow 0} \bigg(  \frac{\sin ( \frac{x}{2} )  }{  \cos( \frac{x}{2} ) }  \bigg)

 = \sf\: \sf \sf\: lim_{x \rightarrow 0}  \:  \:  \tan( \frac{x}{2} )

 \sf \: Now \: putting \: th e\: limits

 \sf \:  =  \tan(0)

 = 0

 \orange{\sf\: \sf \sf\: lim_{x \rightarrow 0} \bigg( \cosec(x) - \cot(x) \bigg) = 0</p><p> }

 \sf \bull 2 \: \: solution

\sf\: lim_{x \rightarrow 0} \bigg( \dfrac{ \cos(x) }{ \pi - x} \bigg)

 \sf \: putting \: the \: limits

 = \sf\:  \bigg( \dfrac{ \cos(0) }{ \pi - 0} \bigg)

 =  \frac{1}{\pi}

.................

 \orange{\sf\: lim_{x \rightarrow 0} \bigg( \dfrac{ \cos(x) }{ \pi - x} \bigg) =  \frac{1}{\pi} } \\

 \sf \red {\: I \:  think  \:  the  \:  limits  \: of \:  2nd  \: question \:  is  \: \pi}

So

\sf\: lim_{x \rightarrow \pi} \bigg( \dfrac{ \cos(x) }{ \pi - x} \bigg)

Here denominator become zero as we putting the value of x

Then. appling L hospital rule

which is differencate the denominator

 = \sf\: lim_{x \rightarrow \pi} \bigg(   \dfrac{  \frac{d}{dx}( \cos(x)) }{  \frac{d}{dx}( \pi - x)} \bigg) \\

 = \sf\: lim_{x \rightarrow \pi} \bigg( \dfrac{  - \sin(x) }{ 0 - 1} \bigg)

 = \sf\: lim_{x \rightarrow \pi}  \:  \sin(x)

Putting the limits

 =  \sin(\pi)

 = 0

 \orange{\sf\: lim_{x \rightarrow \pi} \bigg( \dfrac{ \cos(x) }{ \pi - x} \bigg) = 0}


PharohX: are in 11th standard?
Similar questions