✬ HeY There ✬
• In the given figure, ABC is a right angled triangle, right angled at A, in which AB = 6 cm, BC = 10 cm and I is incentre of ∆ABC. Find the area of the shaded region.
(Take π = 3.14)
Answers
Required Answer:
ᴀʙᴄ ɪs ᴀ ʀɪɢʜᴛ ᴀɴɢʟᴇᴅ ᴛʀɪᴀɴɢʟᴇ ᴡʜᴇʀᴇ Angle A = 90°
BC = 10 cm and AB = 6 cm
Let O be the centre and (r) be the radius of the in-circle.
AB, BC and CA are the tangents to the circle at P, M and N.
Therefore IP = IM = IN = r (radius of the circle)
In ∆BAC,
BC² = AB² + AC²(by Pythagoras theorem)
10² = 6² + AC²
AC² = 100-36
= 64
Therefore, AC = 8 cm.
Area of ∆ABC = BH
= × AC × AB
= × 8 × 6
= 24 sq.cm
Area of ∆ABC = Area of ∆IAB + Area of ∆IBC + Area of ∆ICA.
➪24 = r(AB) + r(BC) + r(CA)
➪24 = r(AB+BC+CA)
➪24 = r(6+8+10)
➪24 = 12r
Therefore, r = 24/12
= 2cm.
Area of the circle = πr²
= 22/7 × 2²
= 12.56sq.cm
Area of shaded region = Area of ∆ABC - Area of the circle
= 24 - 12.56
= 11.44sq.cm
Answer:
Given :-
- ABC is a right angled triangle at A, in which AB = 6 cm, BC = 10 cm and I is incenter of ∆ABC. ( π = 3.14 )
To Find :-
- What is the area of the shaded region.
Solution :-
Given :
In ∆ABC, ∠A = 90°, AB = 6 cm, BC = 10 cm.
By using Phythagorus Theorem,
✦ BC² = AC² + AB²
⇒ AC² = BC² - AB²
⇒ AC² = (10)² - (6)²
⇒ AC² = 100 - 36
⇒ AC² = 64
⇒ AC =
⇒ AC = 8 cm
Hence, Area of ∆ABC,
⇒ × AC × AB
⇒ × 8 × 6
⇒ 24 cm²
Now, let r be the radius of the circle of center I
➢ Area of ∆ICB,
⇒ × 10 × r cm²
⇒ 5r cm²
➢ Area of ∆IAB,
⇒ × 6 × r cm²
⇒ 3r cm²
➢ Area of ∆ICA,
⇒ × 8 × cm²
⇒ 4r cm²
Again, we know that,
❖ Area of (∆ICB + ∆IAB + ∆ICA) = Area of ∆ABC
⇒ 5r + 3r + 4r = 24 cm
⇒ 12r = 24 cm
⇒ r =
⇒ 2 cm
Area of incircle = πr²
⇒ 3.14 × 2 × 2
⇒ 12.56 cm²
❖ Shaded area = Area of ∆ABC - Area of incircle
⇒ (24 - 12.56) cm²
11.44 cm²
The area of shaded region is 11.44 cm² .