Math, asked by Anonymous, 3 months ago

Hey there Please Help!!!

Class 12!!

if u know Then Answer otherwise Stay Away

___________________
Note : Don't Spam Otherwise your 30 Answers will Reported or Deleted !!

{\pmb{\underline{\sf{ Be\: brainly \: ..}}}}

Attachments:

Answers

Answered by amansharma264
56

EXPLANATION.

⇒ tan⁻¹x + tan⁻¹y = 4π/5.

As we know that,

Formula of :

⇒ tan⁻¹x + cot⁻¹x = π/2.

Using this formula we can write equation as,

⇒ tan⁻¹x = π/2 - cot⁻¹x.   -------(1).

⇒ tan⁻¹y + cot⁻¹y = π/2.

⇒ tan⁻¹y = π/2 - cot⁻¹y.  --------(2).

From equation (1) & (2), we get.

⇒ π/2 - cot⁻¹x + π/2 - cot⁻¹y = 4π/5.

⇒ π/2 + π/2 - cot⁻¹x - cot⁻¹y = 4π/5.

⇒ 2π/2 - 4π/5 = cot⁻¹x + cot⁻¹y.

⇒ π - 4π/5 = cot⁻¹x + cot⁻¹y.

⇒ 5π - 4π/5 = cot⁻¹x + cot⁻¹y.

⇒ π/5 = cot⁻¹x + cot⁻¹y.

⇒ cot⁻¹x + cot⁻¹y = π/5.

Option [A] is correct answer.

                                                                                                                     

MORE INFORMATION.

Properties of trigonometric inverse function.

(1) = sin⁻¹(-x) = -sin⁻¹x.

(2) = cos⁻¹(-x) = π - cos⁻¹x.

(3) = tan⁻¹(-x) = -tan⁻¹(x).

(4) = cot⁻¹(-x) = π - cot⁻¹x.

(5) = sec⁻¹(-x) = π - sec⁻¹x.

(6) = cosec⁻¹(-x) = -cosec⁻¹x.

(1) = sin⁻¹x + cos⁻¹x = π/2.

(2) = tan⁻¹x + cot⁻¹x = π/2.

(3) = sec⁻¹x + cosec⁻¹x = π/2.

Answered by TheDiamondBoyy
57

\sf\underline\pink{Given}

⇒ tan⁻¹x + tan⁻¹y = \sf\tt\frac{4π}{5}

\sf\underline\red{Solution}

As we know that,

Formula of :

⇒ tan⁻¹x + cot⁻¹x = \sf\frac{π}{2}

Using this formula we can write equation as,

⇒ tan⁻¹x = \sf\frac{π}{2} - cot⁻¹x----(1).

⇒ tan⁻¹y + cot⁻¹y = \sf\frac{π}{2}.

⇒ tan⁻¹y = \sf\frac{π}{2}- cot⁻¹y----(2).

From equation (1) & (2), we get.

⇒ \sf\frac{π}{2} - cot⁻¹x + \sf\frac{π}{2}- cot⁻¹y = \sf\frac{4π}{5}\\

⇒ \sf\frac{π}{2} + \sf\frac{π}{2} - cot⁻¹x - cot⁻¹y = \sf\frac{4π}{5}\\

⇒\sf\frac{2π}{2}  - \sf\frac{4π}{5} = cot⁻¹x + cot⁻¹y.

⇒ π - \sf\frac{4π}{5} = cot⁻¹x + cot⁻¹y.\\

⇒ 5π - \sf\frac{4π}{5} = cot⁻¹x + cot⁻¹y.\\

⇒ \sf\frac{π}{5} = cot⁻¹x + cot⁻¹y.\\

⇒ cot⁻¹x + cot⁻¹y = \sf\frac{π}{5}.\\

\sf\underline\purple{Option [A] is correct answer.}

                                                                                                                     

MORE INFORMATION-

Properties of trigonometric inverse function.

1) = sin⁻¹(-x) = -sin⁻¹x.

2) = cos⁻¹(-x) = π - cos⁻¹x.

3) = tan⁻¹(-x) = -tan⁻¹(x).

4) = cot⁻¹(-x) = π - cot⁻¹x.

5) = sec⁻¹(-x) = π - sec⁻¹x.

6) = cosec⁻¹(-x) = -cosec⁻¹x.

1) = sin⁻¹x + cos⁻¹x = π/2.

2) = tan⁻¹x + cot⁻¹x = π/2.

3) = sec⁻¹x + cosec⁻¹x = π/2.

Similar questions