Hey there Please Help!!!
Class 12!!
if u know Then Answer otherwise Stay Away
___________________
Note : Don't Spam Otherwise your 30 Answers will Reported or Deleted !!
Answers
EXPLANATION.
⇒ tan⁻¹x + tan⁻¹y = 4π/5.
As we know that,
Formula of :
⇒ tan⁻¹x + cot⁻¹x = π/2.
Using this formula we can write equation as,
⇒ tan⁻¹x = π/2 - cot⁻¹x. -------(1).
⇒ tan⁻¹y + cot⁻¹y = π/2.
⇒ tan⁻¹y = π/2 - cot⁻¹y. --------(2).
From equation (1) & (2), we get.
⇒ π/2 - cot⁻¹x + π/2 - cot⁻¹y = 4π/5.
⇒ π/2 + π/2 - cot⁻¹x - cot⁻¹y = 4π/5.
⇒ 2π/2 - 4π/5 = cot⁻¹x + cot⁻¹y.
⇒ π - 4π/5 = cot⁻¹x + cot⁻¹y.
⇒ 5π - 4π/5 = cot⁻¹x + cot⁻¹y.
⇒ π/5 = cot⁻¹x + cot⁻¹y.
⇒ cot⁻¹x + cot⁻¹y = π/5.
Option [A] is correct answer.
MORE INFORMATION.
Properties of trigonometric inverse function.
(1) = sin⁻¹(-x) = -sin⁻¹x.
(2) = cos⁻¹(-x) = π - cos⁻¹x.
(3) = tan⁻¹(-x) = -tan⁻¹(x).
(4) = cot⁻¹(-x) = π - cot⁻¹x.
(5) = sec⁻¹(-x) = π - sec⁻¹x.
(6) = cosec⁻¹(-x) = -cosec⁻¹x.
(1) = sin⁻¹x + cos⁻¹x = π/2.
(2) = tan⁻¹x + cot⁻¹x = π/2.
(3) = sec⁻¹x + cosec⁻¹x = π/2.
As we know that,
Formula of :
Using this formula we can write equation as,
From equation (1) & (2), we get.
MORE INFORMATION-
Properties of trigonometric inverse function.
1) = sin⁻¹(-x) = -sin⁻¹x.
2) = cos⁻¹(-x) = π - cos⁻¹x.
3) = tan⁻¹(-x) = -tan⁻¹(x).
4) = cot⁻¹(-x) = π - cot⁻¹x.
5) = sec⁻¹(-x) = π - sec⁻¹x.
6) = cosec⁻¹(-x) = -cosec⁻¹x.
1) = sin⁻¹x + cos⁻¹x = π/2.
2) = tan⁻¹x + cot⁻¹x = π/2.
3) = sec⁻¹x + cosec⁻¹x = π/2.