Hey !!
TRIGONOMETRIC RATIOS
If Cose∅ + Cot∅ = k then prove that cos∅ = k² - 1 / k² + 1
NO COPIED ANSWERS !!
Answers
Answered by
67
Let ∅ = x
Cosec x + Cot x = k (given)
Now, taking RHS from the question
= LHS
So, cos∅ = k² - 1 / k² + 1
Hence proved
Answered by
77
Correct Question
If Cosec∅ + Cot∅ = k then prove that cos∅ = k² - 1 / k² + 1
Solution
Given : cosec∅ + cot∅ = k ___(1)
On squaring equation (1)
→ cosec²∅ + cot²∅ + 2(cosec∅)(cot∅) = k²
→ cosec²∅ + cot²∅ + 2(1/sin∅)(cos∅/sin∅)
→ 1/(sin²∅) + cos²∅/sin²∅ + 2cos∅/sin²∅
→ (1 + cos²∅ + 2cos∅)/sin²∅
→ (cos∅ + 1)²/sin²∅ = k² ___(2)
→ (1 + cos∅)(1 + cos∅)/(1 - cos²∅) = k²
→(1 + cos∅)(1 + cos∅)/(1 - cos∅)(1 + cos∅) = k²
→1 + cos∅ = k² - k²cos∅
→ k²cos∅ + cos∅ = k² - 1
→ cos∅(k² + 1) = k² - 1
→ cos∅ = (k² - 1)/(k² + 1)
Hence Proved
Similar questions