Math, asked by CaptainBrainly, 1 year ago

Hey !!

TRIGONOMETRIC RATIOS


If Cose∅ + Cot∅ = k then prove that cos∅ = k² - 1 / k² + 1

NO COPIED ANSWERS !!​

Answers

Answered by Anonymous
67

 \huge \underline \mathfrak {Solution:-}

Let ∅ = x

Cosec x + Cot x = k (given)

 \frac{ 1}{ \sin(x) }  +  \frac{ \cos(x) }{ \sin(x) }  = k \\  \\  \frac{(1 +  \cos(x) )}{ \sin(x) }  = k \\  \\  \frac{2 \cos {}^{2} ( \frac{x}{2} ) }{2 \sin(x  ) \cos(x)  }  = k \\  \\  \frac{ \cos( \frac{x}{2} ) }{ \sin( \frac{x}{2} ) }  = k \:  \:  \:  \:  \:  \:  \:  \:  ......(1)

Now, taking RHS from the question

 \frac{ {k}^{2}  - 1}{ {k}^{2}  + 1}  \\  \\  =  \frac{ \frac{ \cos {}^{2} ( \frac{x}{2} ) }{ \sin {}^{2} ( \frac{x}{2} )  } - 1 }{ \frac{ \cos {}^{2} ( \frac{x}{2} ) }{ \sin {}^{2} ( \frac{x}{2} )  }  + 1 }  \\  \\  =  \frac{\cos {}^{2} ( \frac{x}{2} ) -\sin {}^{2} ( \frac{x}{2} ) }{\cos {}^{2} ( \frac{x}{2} )  + \sin {}^{2} ( \frac{x}{2} )}  \\  \\  =  \frac{ \cos(x) }{1}  \\  \\  =  \cos(x)

= LHS

So, cos∅ = k² - 1 / k² + 1

Hence proved

Answered by ShuchiRecites
77

Correct Question

If Cosec∅ + Cot∅ = k then prove that cos∅ = k² - 1 / k² + 1

Solution

Given : cosec∅ + cot∅ = k ___(1)

On squaring equation (1)

→ cosec²∅ + cot²∅ + 2(cosec∅)(cot∅) = k²

→ cosec²∅ + cot²∅ + 2(1/sin∅)(cos∅/sin∅)

→ 1/(sin²∅) + cos²∅/sin²∅ + 2cos∅/sin²∅

→ (1 + cos²∅ + 2cos∅)/sin²∅

→ (cos∅ + 1)²/sin²∅ = k² ___(2)

→ (1 + cos∅)(1 + cos∅)/(1 - cos²∅) = k²

→(1 + cos∅)(1 + cos∅)/(1 - cos∅)(1 + cos∅) = k²

→1 + cos∅ = k² - k²cos∅

→ k²cos∅ + cos∅ = k² - 1

→ cos∅(k² + 1) = k² - 1

→ cos∅ = (k² - 1)/(k² + 1)

Hence Proved

Similar questions