Math, asked by CaptainBrainly, 1 year ago

Hey !!

TRIGONOMETRIC RATIOS :

Prove that :

√(1+cos∅ / 1-cos∅) = cosec∅ + cot∅

No copied Answers !!​

Answers

Answered by ShuchiRecites
137

To Prove

√(1+cos∅ / 1-cos∅) = cosec∅ + cot∅

R.H.Scosec∅ + cot∅

Since we know that,

  • cosec∅ = 1/sin∅
  • cot ∅ = cos∅/sin∅

→ 1/sin∅ + cos∅/sin∅

(1 + cos∅)/sin∅

→ (1 + cos∅)/sin∅ = √[(1 + cos∅)/(1 - cos∅)]

→ (1 + cos∅)²/sin²∅ = (1 + cos∅)/(1 - cos∅)

→ (1 + cos∅)(1 + cos∅)/(1 - cos∅)(1 + cos∅) = (1 + cos∅)/(1 - cos∅)

→ (1 + cos∅)/(1 - cos∅) = (1 + cos∅)/(1 - cos∅)

Remember

  • sin²∅ = 1 - cos²∅
  • 1² - cos²∅ = (1 - cos∅)(1 + cos∅)

Hence Proved


Anonymous: Nice answer!
ShuchiRecites: Thank u :-)
Anonymous: Osm!
fanbruhh: well done
ShuchiRecites: Thanks :-)
Answered by Anonymous
159

 \sqrt{ \dfrac{1 \:  +  \: cos \:  \theta}{1 \:  -  \: cos \:  \theta} } = cosec Ø + cot Ø

• We have to prove L.H.S. = R.H.S

» Take L.H.S.

=>  \sqrt{ \dfrac{1 \:  +  \: cos \:  \theta}{1 \:  -  \: cos \:  \theta} }

Rationalize it.

=>  \sqrt{ \dfrac{1 \:  +  \: cos \:  \theta}{1 \:  -  \: cos \:  \theta} } ×  \sqrt{ \dfrac{1 \:  +  \: cos \:  \theta}{1 \:  +  \: cos \:  \theta} }

» (a + b) (a + b) = a² + b²

(a + b) (a - b) = a² - b²

=> \sqrt{ \dfrac{ {(1 \:  +  \: cos \:  \theta)}^{2} }{ {1}^{2} \:  -  \:  {cos }^{2}  \theta } }

» sin²Ø + cos²Ø = 1

1 - cos²Ø = sin²Ø

=> \sqrt{ \dfrac{ {(1 \:  +  \: cos \:  \theta)}^{2} }{ {sin }^{2}  \theta } }

=> \dfrac{1\:+\:cos\:\theta}{sin\:\theta}

=> \dfrac{1}{sin\:\theta} + \dfrac{cos\:\theta}{sin\:\theta}

» cosec Ø = \dfrac{1}{sin\:\theta}

» cot Ø = \dfrac{cos\:\theta}{sin\:\theta}

=> cosec Ø + cot Ø

• L.H.S. = R.H.S.

_____________ [HENCE PROVED]

Similar questions