Hey !!
TRIGONOMETRIC RATIOS :
Prove that :
√(1+cos∅ / 1-cos∅) = cosec∅ + cot∅
No copied Answers !!
Answers
Answered by
137
To Prove
√(1+cos∅ / 1-cos∅) = cosec∅ + cot∅
R.H.S → cosec∅ + cot∅
Since we know that,
- cosec∅ = 1/sin∅
- cot ∅ = cos∅/sin∅
→ 1/sin∅ + cos∅/sin∅
→ (1 + cos∅)/sin∅
→ (1 + cos∅)/sin∅ = √[(1 + cos∅)/(1 - cos∅)]
→ (1 + cos∅)²/sin²∅ = (1 + cos∅)/(1 - cos∅)
→ (1 + cos∅)(1 + cos∅)/(1 - cos∅)(1 + cos∅) = (1 + cos∅)/(1 - cos∅)
→ (1 + cos∅)/(1 - cos∅) = (1 + cos∅)/(1 - cos∅)
Remember
- sin²∅ = 1 - cos²∅
- 1² - cos²∅ = (1 - cos∅)(1 + cos∅)
Hence Proved
Anonymous:
Nice answer!
Answered by
159
= cosec Ø + cot Ø
• We have to prove L.H.S. = R.H.S
» Take L.H.S.
=>
Rationalize it.
=> ×
» (a + b) (a + b) = a² + b²
(a + b) (a - b) = a² - b²
=>
» sin²Ø + cos²Ø = 1
1 - cos²Ø = sin²Ø
=>
=>
=> +
» cosec Ø =
» cot Ø =
=> cosec Ø + cot Ø
• L.H.S. = R.H.S.
_____________ [HENCE PROVED]
Similar questions