Math, asked by zacknight47, 10 months ago

Hey Users If u know answer then answer ​

Attachments:

Answers

Answered by Prxyaaa
18

Step by step explanation:-

y(1 + xy)dx = xdy

 \frac{y}{x}(1 + xy) =  \frac{dy}{dx}

y = vx⇒  \frac{dy}{dx}  = v + x  \frac{dv}{dx}

∴v \: (1 +  {vx}^{2} ) = v + x \frac{dv}{dx}

 {v}^{2}  {x}^{2}  = x \frac{dv}{dx}

 {v}^{2} x =  \frac{dv}{dx}

f \: xdx = f \frac{1}{ {v}^{2} } dv

 \frac{ {x}^{2} }{2}  =  \frac{ - 1}{v}  + c

 \frac{ {x}^{2} }{2}  =  \frac{ - x}{y} + c

put \: ( 1, - 1)

 \frac{ {1}^{2} }{2 }  =  \frac{ - x}{y} -  \frac{1}{2}

we \: have \: to \: find \: f (-\frac{1}{2} )

substitude \: x = -\frac{1}{2}

\frac{   {(-\frac{1}{2})}^{2}  }{2}  =   \frac{ -  ( - \frac{1}{2} )}{y}  -  \frac{1}{2}

 \frac{1}{8}  =  \frac{1}{2y}  -  \frac{1}{2}

y =  \frac{4}{5}

Similar questions