Math, asked by xGUITARx, 5 months ago

hey will u pls help me solving this ..........

what will be there in place of x and how ???​

Attachments:

Answers

Answered by AestheticSoul
11

Question

\sf{\bigg(\dfrac{5}{-6}\bigg)^4 ÷ \bigg(\dfrac{5}{-6}\bigg)^x = \bigg[\bigg(\dfrac{5}{-6}\bigg)^2\bigg]^3}

Solution

\sf{\bigg(\dfrac{5}{-6}\bigg)^4 ÷ \bigg(\dfrac{5}{-6}\bigg)^x = \bigg[\bigg(\dfrac{5}{-6}\bigg)^2\bigg]^3}

\sf{\bigg(\dfrac{5}{-6}\bigg)^{4 - x} = \bigg[\bigg(\dfrac{5}{-6}\bigg)^2\bigg]^3}

\sf{\bigg(\dfrac{5}{-6}\bigg)^{4 - x} =  \bigg(\dfrac{5}{-6}\bigg)^{2 \times 3}}

\sf{\bigg(\dfrac{5}{-6}\bigg)^{4 - x} =  \bigg(\dfrac{5}{-6}\bigg)^{6}}

Bases are equal, powers are equal.

\sf{4 - x = 6}

 \mapsto\sf{ - x = 6 - 4}

 \mapsto\sf{ - x = 2}

 \mapsto\sf{x =  - 2}

The value of x = -2

━━━━━━━━━━━

• Know MorE -

\red{\bigstar}   Laws of Indices -

  • 1st Law (Product Law)

For example -

:  \implies\sf{ {a}^{2} \times  {a}^{3} =  {a}^{2 + 3}   }

:  \implies\sf{ {a}^{5}   }

  • 2nd Law  (Quotient law)

For example -

: \implies\sf{ \dfrac{a^{2} }{a^{3}} }

: \implies\sf{a^{2 - 3} }

: \implies\sf{a^{ - 1} }

  • 3rd Law (Power law)

For example -

: \implies\sf{(a^2)^3}

: \implies\sf{(a^{2 \times 3})}

: \implies\sf{(a^{6})}

Answered by IIDarvinceII
52

Given:-

 \sf \bullet {\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{4} \div  {\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{x} =  {\bigg\{{\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{2}\bigg \}}^{3}

Find:-

 \sf \bullet Value \:  of  \: x

Solution:-

 \sf :\Longrightarrow {\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{4} \div  {\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{x} =  {\bigg\{{\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{2}\bigg \}}^{3} \\

 \sf  \because  {a}^{m} \div  {a}^{n} =  {a}^{m - n} \\

 \sf :\Longrightarrow {\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{4 - x}=  {\bigg\{{\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{2}\bigg \}}^{3} \\

 \sf  \because {({a}^{m})}^{n} =  {a}^{mn} \\

 \sf :\Longrightarrow {\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{4 - x}=  {\bigg\lgroup \dfrac{5}{ - 6}\bigg \rgroup}^{6}\\

 \sf  \because {a}^{m}=  {a}^{n}  \implies m = n\\

 \sf :\Longrightarrow 4 - x = 6\\

 \sf :\Longrightarrow 4 = 6 + x\\

 \sf :\Longrightarrow 4 - 6 =x\\

 \sf :\Longrightarrow  - 2 =x\\

 \underline{\boxed{\sf \therefore The\:value\:of\:x\:is\:-2}}

Similar questions