HEYA..... :-)
★
★
★
★
■ 20 POINTS
● FULL EXPLAINATION
◆ NO USELESS ANSWER
____________________
→ IF 2Cosx + Sinx =1 , then value of 7cosx + 6sinx is equals to
A) 2 OR 6
B) 1 OR 3
C) 2 OR 3
D) NONE OF THESE
________________
FULL EXPLAINATION :-)
Answers
Answered by
2
Cosx = (1-tan2x/2)/(1+tan2x/2)
Sin x = (2tanx/2)/(1+tan2x/2)
2cosx + sinx=1
2(((1-tan2x/2)/(1+tan2x/2)) + ((2tanx/2)/(1+tan2x/2))=1
Solving this we get quadratic in tanx/2
3tan2x/2 – 2tanx/2 -1=0
(3tanx/2+1)(tanx/2 -1)=0
Tanx/2 =1 or -1/3
7cosx + 6sinx
7((1-tan2x/2)/(1+tan2x/2)) + 6((2tanx/2)/(1+tan2x/2))
Putting value of Tanx/2, we get
When
Tanx/2 =1 Ans=6
When
Tanx/2=-1/3 Ans=2
A is the correct option.
Sin x = (2tanx/2)/(1+tan2x/2)
2cosx + sinx=1
2(((1-tan2x/2)/(1+tan2x/2)) + ((2tanx/2)/(1+tan2x/2))=1
Solving this we get quadratic in tanx/2
3tan2x/2 – 2tanx/2 -1=0
(3tanx/2+1)(tanx/2 -1)=0
Tanx/2 =1 or -1/3
7cosx + 6sinx
7((1-tan2x/2)/(1+tan2x/2)) + 6((2tanx/2)/(1+tan2x/2))
Putting value of Tanx/2, we get
When
Tanx/2 =1 Ans=6
When
Tanx/2=-1/3 Ans=2
A is the correct option.
DESICREW:
thank u so much
Answered by
2
Answer:
Option (A)
Explanation:
Given Equation is 2cosx + sinx = 1.
= > 2cosx = 1 - sinx
On squaring both sides, we get
= > (2cosx)^2 = (1 - sinx)^2
= > 4cos^2x = 1 + sin^2x - 2sinx
= > 4(1 - sin^2x) = 1 + sin^2x - 2sinx
= > 4 - 4sin^2x = 1 + sin^2x - 2sinx
= > 1 + sin^2x - 2sinx - 4 + 4sin^2x = 0
= > 5sin^2x - 2sinx - 3 = 0
= > 5sin^2x - 5sinx + 3sinx - 3 = 0
= > 5sin^2x + 3sinx - 5sinx - 3 = 0
= > sinx(5sinx + 3) - 1(5sinx + 3) = 0
= > (sinx - 1)(5sinx + 3) = 0
= > (sinx - 1) = 0 , (5sinx + 3) = 0
sinx = 1, sinx = -3/5
(1) When sinx = 1 and cosx = 0:
= > 7cosx + 6 sinx
= > 7(0) + 6(1)
= > 6.
(2) when cosx = 0 and sinx = -3/5:
= > 7 cosx + 6sinx
= > 2.
Therefore 7cosx + 6sinx = 2 (or) 6.
Hope this helps!
Option (A)
Explanation:
Given Equation is 2cosx + sinx = 1.
= > 2cosx = 1 - sinx
On squaring both sides, we get
= > (2cosx)^2 = (1 - sinx)^2
= > 4cos^2x = 1 + sin^2x - 2sinx
= > 4(1 - sin^2x) = 1 + sin^2x - 2sinx
= > 4 - 4sin^2x = 1 + sin^2x - 2sinx
= > 1 + sin^2x - 2sinx - 4 + 4sin^2x = 0
= > 5sin^2x - 2sinx - 3 = 0
= > 5sin^2x - 5sinx + 3sinx - 3 = 0
= > 5sin^2x + 3sinx - 5sinx - 3 = 0
= > sinx(5sinx + 3) - 1(5sinx + 3) = 0
= > (sinx - 1)(5sinx + 3) = 0
= > (sinx - 1) = 0 , (5sinx + 3) = 0
sinx = 1, sinx = -3/5
(1) When sinx = 1 and cosx = 0:
= > 7cosx + 6 sinx
= > 7(0) + 6(1)
= > 6.
(2) when cosx = 0 and sinx = -3/5:
= > 7 cosx + 6sinx
= > 2.
Therefore 7cosx + 6sinx = 2 (or) 6.
Hope this helps!
Similar questions