Math, asked by TheTotalDreamer, 1 year ago

⏩Heya,⏪

50 points ✌✌✌
______________________

Please solve this Q25. ASAP:
______________________

Answer for convenience:

(i.) (0,3-4√3)

(ii.) (0,3+4√3)

______________________

▶Note:- PLEASE GIVE ONLY RELEVANT ANSWERS:)

Attachments:

Answers

Answered by MonarkSingh
3
Here is your answer.
Given, P(0, 2) is equidistant from A(3, k) and B(k, 5).

∴ AP = PB

⇒ AP2 = PB2

⇒ (3 – 0)2 + (k – 2)2 = (k – 0)2 + (5 – 2)2    [ Using Distance formula]

⇒ 9 + k2 – 4k + 4 = k2 + 9

⇒ – 4k + 4 = 0

⇒ 4k = 4

⇒ k = 1

Thus, the value of k is 1.

Hope it helps you.

TheTotalDreamer: You've given half solution here...
TheTotalDreamer: bt np. i got it
TheTotalDreamer: Anyways thanks :)
MonarkSingh: i have given full in your next question
TheTotalDreamer: yes..i have seen it now!!
Answered by siddhartharao77
6

Given vertices of equilateral triangle are A(-4,3) and B(4,3).

Let the coordinates of the third vertex be C(x,y).

Distance between A(-4,3) and B(4,3):

⇒ √[(4 + 4)^2 + (3 - 3)^2]

⇒ [8^2 + 0^2]

⇒ 64.


Distance between A(-4,3) and C(x,y):

⇒ √[(x + 4)^2 + (y - 3)^2]

⇒ [(x + 4)^2 + (y - 3)^2]

⇒ [x^2 + 16 + 8x + y^2 + 9 - 6y]

⇒ [x^2 + y^2 + 8x - 6y + 25]    ------- (1)


Distance between B(4,3) and C(x,y):

⇒ √[(x - 4)^2 + (y - 3)^2]

⇒ [(x - 4)^2 + (y - 3)^2]

⇒ [x^2 + 16 - 8x + y^2 + 9 - 6y]

⇒ [x^2 + y^2 - 8x - 6y + 25]     --------- (2)


Let's Equate AC = BC  = > AC^2 = BC^2

⇒ x^2 + y^2 + 8x - 6y + 25 = x^2 + y^2 - 8x - 6y + 25

⇒ x^2 + y^2 + 8x - 6y + 25 - x^2 - y^2 + 8x + 6y - 25 = 0

⇒ 16x = 0

⇒ x = 0.


Substitute the value of x = 0 in (1) and equate it to  64, we get

⇒ [x^2 + y^2 + 8x - 6y + 25] = 64

⇒ [0 + y^2 - 6y + 25] = 64

⇒ y^2 - 6y + 25 = 64

⇒ y^2 - 6y - 39 = 0


Now,

Discriminant D = b^2 - 4ac.

                         = (-6)^2 - 4(1)(-39)

                         = 36 + 156

                         = 192.


The solutions for the quadratic equation is:

(a)

y = -b + √D/2a

  = [-(-6) + √192]/2

  = (6 + √192)/2

   = (3 + 4√3)/2.



(b)

y = (-b - √D)/2a

  = (-(-6) - √192)/2

  = (6 - √192)/2

  = (3 - 4√3)/2.


-----------------------------------------------------------------------------------------

(i)

The origin lies in the interior of the triangle.

The third vertex(x,y) = (0,3 - 4√3).


(ii)

The origin lies in the exterior of the triangle.

The third vertex(x,y) = (0,3 + 4√3).



Hope this helps!


TheTotalDreamer: nicely explained....
TheTotalDreamer: thanks a lot :)✌✌✌
siddhartharao77: Thanks for your help!
TheTotalDreamer: :)
Similar questions