Math, asked by Anonymous, 10 months ago

heya...
answer my question plss!!!​

Attachments:

Answers

Answered by Rajputadarshsingh3
15

Step-by-step explanation:

ʟᴇᴛ x ɪs ᴛʜᴇ ᴅɪɢɪᴛ ᴏɴ ᴏɴᴇs ᴘʟᴀᴄᴇ ᴛʜᴇɴ 3x ᴡɪʟʟ ʙᴇ ᴏɴ ᴛᴇɴs ᴘʟᴀᴄᴇ.

sᴏ ɴᴜᴍʙᴇʀ ɪs 10*3x+x=31x

ɴᴏᴡ ɪғ ᴡᴇ ʀᴇᴠᴇʀsᴇ ᴛʜᴇ ᴘᴏsɪᴛɪᴏɴ ᴏғ ᴅɪɢɪᴛ

ᴛʜᴇɴ ɴᴇᴡ ɴᴜᴍʙᴇʀ ɪs

10*x+3x=13x

ɴᴏᴡ,18x=36

ᴛʜɪs ɪᴍᴘʟɪᴇs x=2

sᴏ ᴛʜᴇ ɴᴜᴍʙᴇʀ ɪs 10*3*2+2=62

ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs

Answered by shadowsabers03
8

Let the two digit number be \sf{10x+y.} Here \sf{x} is the tens digit and \sf{y} is the ones digit.

Given that the tens digit is three times the ones digit. Then we have,

\longrightarrow\sf{x=3y}

So our two digit number in terms of \sf{y} will be,

\longrightarrow\sf{10x+y=10(3y)+y}

\longrightarrow\sf{10x+y=31y}

The number formed by reversing the digits is \sf{10y+x,} which in terms of \sf{y} will be,

\longrightarrow\sf{10y+x=10y+3y}

\longrightarrow\sf{10y+x=13y}

Given that our two digit number is 36 greater than the number formed by reversing the digits. Then,

\longrightarrow\sf{31y=13y+36}

\longrightarrow\sf{18y=36}

\longrightarrow\sf{y=2}

Then,

\longrightarrow\sf{x=3y}

\longrightarrow\sf{x=3\times2}

\longrightarrow\sf{x=6}

Hence our two digit number is,

\longrightarrow\sf{10x+y=10\times6+2}

\longrightarrow\sf{\underline{\underline{10x+y=62}}}

Similar questions