Math, asked by max697206, 10 months ago

heya answer this que​

Attachments:

Answers

Answered by amitkumar44481
5

AnsWer :

  • a = - 5.
  • b = 0.

QuestioN :

If x = 0 and x = - 1 are the roots ( zeros ) polynomial f ( x ) 2x² - 3x² + ax + b, find the value of a and b

To Find :

The value of a and b.

SolutioN :

We have,

 \tt  \dagger \: \: \: \: \: \fbox{ 2 {x}^{3}  - 3 {x}^{2}  + ax + b}

Let,

  • f( x ) = 0.

 \tt :  \implies f(0) = 2 {x}^{3}  - 3 {x}^{2}  + ax + b

 \tt :  \implies 0 = 2 {(0)}^{3}  - 3 {(0)}^{2}  + a \times0 + b

 \tt :  \implies b =  0.

Now,

  • f ( x ) = - 1.

 \tt :  \implies f( - 1) = 2 {( - 1)}^{3}  - 3 {( - 1)}^{2}  + a( - 1)+ b

 \tt :  \implies 0 =  - 2 - 3 - a + b.

 \tt :  \implies 0 =   - 5 - a

 \tt :  \implies a =- 5.

Therefore, the value of a = - 5, b = 0.

Answered by sethrollins13
3

✰✰ ANSWER ✰✰

Putting x = 0 : -

\longmapsto\tt{{2x}^{3}-{3x}^{2}+ax+b}

\longmapsto\tt{2{(0)}^{3}-3{(0)}^{2}+a(0)+b=0}

\longmapsto\tt{0-0+0+b=0}

\pink\longmapsto\:\large\underline{\boxed{\bf\red{b}\green{=}\orange{0}}}

Now ,

Putting x = -1 : -

\longmapsto\tt{{2x}^{3}-{3x}^{2}+ax+b}

\longmapsto\tt{2{(-1)}^{3}-3{(-1)}^{2}+a(-1)+b}

\longmapsto\tt{2(-1)-3(1)-1a+0=0}

\longmapsto\tt{-2-3-a=0}

\longmapsto\tt{-a=5}

\red\longmapsto\:\large\underline{\boxed{\bf\green{a}\orange{=}\purple{-5}}}

So, Value of a is -5 and value of b is 0...

Similar questions