Heya Brainliacs!
If SinA + 2CosA = 1, then prove that -
2SinA - CosA = 2
#NoSpam
Answers
Answered by
15
Given that
Sin A + 2 cos A = 1
Squaring on both sides, we get
(sin A + 2 cos A)^2 = 1
We know that (a+b)^2 = a^2 + b^2 + 2ab.
(sin^2 A + 4 cos^2 A + 4 sin A cos A) = 1
4 cos^2 A + 4 sin A cos A = 1 - sin^2 A
4 cos^2 A + 4 sin A cos A = cos^2 A
3 cos^2 A + 4 sin A cos A = 0
3 cos^2 A = - 4 sin A cos A ---- (1).
LHS = 2 sin A - cos A
On squaring , we get
(2 sin A - cos A)^2 = 4 sin^2 A + cos^2 A - 4 sin A cos A
= 4 sin^2A + cos^2A + 3 cos^2A from (i)
= 4 sin^2 A + 4 cos^2 A
= 4(sin^2 A + cos^2 A)
= 4.
Now, (2 sin A - cos A)^2 = 4
= 2 sin A - cos A = 2
LHS = RHS.
HENCE PROVED.
Answered by
0
Heya ,
Question:-
If SinA +2CosA =1 then prove that 2SinA - CosA =2
Answer-:
SinA + 2Cos =1
squaring on both sides , we get
(SinA + 2CosA )^ 2 = 1
we know that (a+b)^2 = a^2 + b^2 +2ab
=>(sin^2A +4 cos^2A +4sin A. CosA)=1
4 cos ^2A+4 sinA cosA= 1 -sin^2A
4 cos^ 2A+4sinA cosA = cos ^2A
3cos^2A +4sinA cosA =0
3cos ^2A= - 4sinA cosA --- (1)
Given 2 sinA cosA
squaring on both sides , we get
(2sinA - cosA ) ^ 2= 4 sin ^2A + cos ^2A - 4 sinA cosA = 4 sin^2A + cos ^2A + 3cos^2A
2sinA - cos A =2
LHS= RHS
thank you:-)
Hope this helps:-)
Similar questions
Hindi,
5 months ago
Social Sciences,
11 months ago
Social Sciences,
11 months ago
History,
1 year ago