Math, asked by happiness18, 3 months ago

heya brainlians!
HELP PLEASE
QUESTION:-
if cosec theta+sin theta =4, find the value of (sin²theta+cosec²theta)

please help ASAP​

Answers

Answered by Anonymous
4

Answer:

cosec \:  \alpha  + sin \:  \alpha  = 4 \\  \\  =  > (cosec \:  \alpha  + sin \:  \alpha ) ^{2}  =  ({4})^{2}  \\  \\  =  >  {cosec}^ {2}  \:  \alpha  +  {sin}^{2}  \:  \alpha  + 2 \times sin \:  \alpha  \times cosec \:  \alpha  = 16 \\  \\  =  > cosec {}^{2}  \:  \alpha  +  {sin}^{2}  \alpha  + 2 \times 1 = 16 \\  \\  =  >  {cosec}^{2}  \:  \alpha  +  {sin}^{2}  \alpha   \:  + 2 = 16 \\  \\  =  >  {cosec}^{2}  \alpha  +  {sin}^{2}  \:  \alpha  = 16 - 2 \\  \\  =  >  {cosec}^{2}  \:  \alpha  +  {sin}^{2}  \:  \alpha  = 14 \\  \\  \\ formula \:  \:  -  \:  \: (x + y) {}^{2}  =  {x}^{2}  +  {y}^{2}  + 2 . x.y \\  \\ cosec \:  \alpha  =  \frac{1}{sin \:  \alpha }

Answered by MysteriousMoonchild
11

Answer:

heya!

here is ur answer in the attachment ✨

hope it's helpful to you

thnku !!!

____________________________

Attachments:
Similar questions