Math, asked by Anonymous, 1 year ago

heya!!


Derive function of 120 degree from the functions of 60 degree and check by using relation between functions of supplementary angles.

thanks :D

Answers

Answered by siddhartharao77
34

Step-by-step explanation:

Given, θ = 60°.

Now, we have to derive functions of 120 degrees(2 * 60 = 2θ)

(i)

sin 2θ = 2 sinθ cosθ

          = 2 sin60 cos60

          = 2 (√3/2) (1/2)

          = √3/2

Verification:

Supplementary angle = 180°.

sin 120 = sin(180 - 60)

            = sin 60 {sin (180 - θ) = sin θ}

            = √3/2

∴ Hence, verified!


(ii)

cos 2θ = 1 - 2sin²θ

           = 1 - 2(3/4)

           = -1/2

Verification:

cos 120 = cos(180 - 60)

             = -cos 60  {cos(180 - θ) = -cosθ}

             = -1/2

∴Hence, verified!


(iii)

tan 2θ = sin 2θ/cos 2θ

           = (√3/2) * (-2)

           = -√3

Verification:

tan 120 = tan(180 - 60)

            = tan 60 {tan(180 - θ) = -tanθ}

            = -√3

∴ Hence, verified!


(iv)

cot 2θ = cos 2θ/sin 2θ

           = (-1/2) * (2/√3)

           = -1/√3

Verification:

cot 120 = cot(180 - 60)

            = -cot 60 {cot (180 - 60} = -cot 60}

            = -1/√3

∴Hence, verified!


(v)

sec 2θ = (1/cos2θ)

           = (1/-1/2)

           = -2

Verification:

sec 120 = sec(180 - 60)

             = -sec 60 {sec (180 - θ) = -secθ}

             = -2.

Hence, verified!


(vi)

cosec 2θ = (1/sin 2θ)

               = (1/√3/2)

               = 2/√3

Verification:

cosec 120 = cosec (180 - 60)

                 = cosec 60 {cosec(180 - θ) = cosecθ}

                 = 2/√3

∴ Hence, verified!



Hope it helps!


Anonymous: thank uh
siddhartharao77: Welcome!
Similar questions