Math, asked by Anonymous, 9 months ago

Heya Dost ❤️ Solve this ✓✓


~ Solve the equation by Using the formulae x^2 - 6x = 27 ​

Answers

Answered by InfiniteSoul
11

\sf{\underline{\boxed{\green{\large{\bold{ Question}}}}}}

  • solve the equation using formulae \sf x^2 - 6x = 27

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies x^2 - 6x = 27

\sf\implies x^2 - 6x - 27 = 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 1

☯ b = -6

☯ c = -27

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (-6)^2 - 4 \times 1 \times -27

\sf\implies D = 36 + 108

\sf\implies D = 144

\sf{\underline{\boxed{\blue{\large{\bold{ D = 144}}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( -6)  \pm\sqrt {144} }{2\times 1 }

\sf\implies x = \dfrac{ 6 \pm 12 }{2}

⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{ 6 + 12 }{ 2 }

\implies x =  \dfrac {18}{2}

\implies x = 9

\sf{\underline{\boxed{\purple{\large{\bold{ x = 9 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{ 6 - 12 }{ 2 }

\implies x =  \dfrac {-6}{2}

\implies x = -3

\sf{\underline{\boxed{\purple{\large{\bold{ x = -3 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = 9 \: or \:-3 }}}}}}

Answered by TheProphet
3

Solution :

\bigstar By using quadratic formula :

We have equation p(x) = x² - 6x = 27

∴ x² - 6x - 27 = 0

As we know that given quadratic polynomial compared with ax² + bx + c;

  • a = 1
  • b = -6
  • c = -27

\boxed{\bf{x=\frac{-b\pm\sqrt{b^{2}-4ac} }{2a} }}}

\longrightarrow\tt{x=\dfrac{-(-6)\pm\sqrt{(-6)^{2}-4\times 1\times (-27)} }{2\times 1} }\\\\\\\longrightarrow\tt{x=\dfrac{6\pm\sqrt{36-4\times (-27)} }{2} }\\\\\\\longrightarrow\tt{x=\dfrac{6\pm\sqrt{36+108} }{2} }\\\\\\\longrightarrow\tt{x=\dfrac{6\pm\sqrt{144} }{2} }\\\\\\\longrightarrow\tt{x=\dfrac{6\pm 12}{2}} \\\\\\\longrightarrow\tt{x=\dfrac{6+12}{2} \:\:\:Or\:\:\:x=\dfrac{6-12}{2} }\\\\\\\longrightarrow\tt{x=\cancel{\dfrac{18}{2}} \:\:\:Or\:\:\:x=\cancel{\dfrac{-6}{2} }}\\\\

\longrightarrow\bf{x=9\:\:\:Or\:\:\:x=-3}

Thus;

∴ x = 9 Or x = -3 are two roots of the given polynomial .

Similar questions