Heya Friends !!
Prove that. : -
sin π/18 × sin 5π/18 × sin 7π/18 =1/8
Answers
Answered by
56
Hey;
ANSWER TO YOUR QUESTION IS:-
sin(pi/18)*sin(5pi/18)*sin(7pi/18)=
=sin10xsin50xsin70
=-1/2(cos60-cos40)sin70
==-1/2(1/2-cos40)sin70
=-1/4(1-2cos40)sin70
=-1/4(sin70-2cos40sin70)
-1/4(sin70-2sin50sin70)
=-1/4(sin70+(cos120-cos20)
=-1/4(sin70-cos20-1/2)
=-1/4(sin70-sin70-1/2)
=-1/4(-1/2)
=1/8 =ANSWER
HOPE IT HELPS:-))
ANSWER TO YOUR QUESTION IS:-
sin(pi/18)*sin(5pi/18)*sin(7pi/18)=
=sin10xsin50xsin70
=-1/2(cos60-cos40)sin70
==-1/2(1/2-cos40)sin70
=-1/4(1-2cos40)sin70
=-1/4(sin70-2cos40sin70)
-1/4(sin70-2sin50sin70)
=-1/4(sin70+(cos120-cos20)
=-1/4(sin70-cos20-1/2)
=-1/4(sin70-sin70-1/2)
=-1/4(-1/2)
=1/8 =ANSWER
HOPE IT HELPS:-))
Answered by
23
Answer:
To prove: sin π/18 × sin 5π/18 × sin 7π/18 =1/8
We know that ,
π/18 = 10° , 5π/18 = 50° and 7π/18 = 70°
Consider,
LHS
= sin π/18 × sin 5π/18 × sin 7π/18
= sin 10 × sin 50 × sin 70
= -1/2 ( cos (10+50) - cos (50-10) ) × sin 70
= -1/2 ( cos 60 - cos 40 ) × sin 70
= -1/2 ( 1/2 - cos 40 ) × sin 70
= -1/4 ( 1 - 2cos 40 ) × sin 70
= -1/4 ( sin 70 - 2 cos 40 × sin 70 )
= -1/4 ( sin 70 - 2 sin ( 90 - 50 ) × sin 70 )
= -1/4 ( sin 70 - 2 sin 50 × sin 70 )
= -1/4 ( sin 70 + ( cos( 50 + 70 ) - cos( 70 - 50) ) )
= -1/4 ( sin 70 + ( cos 120 - cos 20 ) )
= -1/4 ( sin 70 + ( cos 120 - sin ( 90 - 70 ) ) )
= -1/4 ( sin 70 + ( cos 120 - sin 70 ) )
= -1/4 ( sin 70 + cos 120 - sin 70 )
= -1/4 ( cos 120 )
= -1/4 ( -1/2 )
= 1/8
= RHS
Similar questions