Heya Frnds.........(´• ω •`)ノ
Plz answer it fast........
NO SPAMS.........
PROPER SOLUTION STEP BY STEP..........
ψ Q - 24 ψ
Attachments:
kvnmurty:
please type in the question directly in the post. do not attach photos please for simple questions like this.
Answers
Answered by
69
Qn: 2 (Sin⁶θ + Cos⁶θ) - 3 (Sin⁴ θ+ cos⁴θ) + 1 = 0
We know Sin² θ+ Cos²θ = 1
Squaring it on both sides, we get:
Sin⁴ θ+ Cos⁴ θ = 1² - 2 Sin²θ Cos² θ
Cubing it on both sides, we get:
Sin⁶θ + Cos⁶θ = 1³ - 3 Sin²θ Cos²θ (Sin²θ + Cos²θ)
= 1 - 3 Sin²θ Cos²θ
Substituting it in the given equation:
LHS = 2 (1 - 3 Sin²θ Cos²θ) - 3 (1 - 2 Sin² θ Cos²θ) + 1
= 0 Proved
We know Sin² θ+ Cos²θ = 1
Squaring it on both sides, we get:
Sin⁴ θ+ Cos⁴ θ = 1² - 2 Sin²θ Cos² θ
Cubing it on both sides, we get:
Sin⁶θ + Cos⁶θ = 1³ - 3 Sin²θ Cos²θ (Sin²θ + Cos²θ)
= 1 - 3 Sin²θ Cos²θ
Substituting it in the given equation:
LHS = 2 (1 - 3 Sin²θ Cos²θ) - 3 (1 - 2 Sin² θ Cos²θ) + 1
= 0 Proved
Answered by
62
2(sin6x + cos6x) - 3(sin4x + cos4x)+1
=2[(sin2x)3+ (cos2x)3] - 3(sin4x + cos4x)+1
= 2(sin2x + cos2x)(sin4x - sin2xcos2x + cos4x)-3(sin4x + cos4x)+1 [a3+b3=(a+b)(a2-ab+b2)]
= 2(sin4x - sin2xcos2x + cos4x) - 3(sin4x + cos4x)+1 [As sin2x + cos2x=1]
= 2(sin4x + cos4x) - 2sin2xcos2x - 3(sin4x + cos4x)+1
= -(sin4x + cos4x) - 2sin2xcos2x+1
= -(sin4x + cos4x + 2sin2xcos2x)+1
= -[(sin2x)2+ (cos2x)2+ 2(sin2x)(cos2x)]+1
= -(sin2x + cos2x)2+1 [As a2+b2+2ab=(a+b)2]
= -(1)2+1 [As sin2x + cos2x=1]
= -1+1 =0
Hence, 2(sin6x + cos6x) - 3(sin4x + cos4x)+1=0
Hope its help you dear
=2[(sin2x)3+ (cos2x)3] - 3(sin4x + cos4x)+1
= 2(sin2x + cos2x)(sin4x - sin2xcos2x + cos4x)-3(sin4x + cos4x)+1 [a3+b3=(a+b)(a2-ab+b2)]
= 2(sin4x - sin2xcos2x + cos4x) - 3(sin4x + cos4x)+1 [As sin2x + cos2x=1]
= 2(sin4x + cos4x) - 2sin2xcos2x - 3(sin4x + cos4x)+1
= -(sin4x + cos4x) - 2sin2xcos2x+1
= -(sin4x + cos4x + 2sin2xcos2x)+1
= -[(sin2x)2+ (cos2x)2+ 2(sin2x)(cos2x)]+1
= -(sin2x + cos2x)2+1 [As a2+b2+2ab=(a+b)2]
= -(1)2+1 [As sin2x + cos2x=1]
= -1+1 =0
Hence, 2(sin6x + cos6x) - 3(sin4x + cos4x)+1=0
Hope its help you dear
Similar questions