Math, asked by sanya55, 1 year ago

heya!! good afternoon all....

Please solve this trigonometry question from class11 .

No spams allowed ❎

Question .
prove \: that \:  \\ 2 \cos \frac{\pi}{13}  \cos \frac{9\pi}{13}  +  \cos \frac{3\pi}{13}  +  \cos \frac{5\pi}{13}  = 0
Please answer quick....

Best answer = brainliest

Answers

Answered by siddhartharao77
4
The answer is explained in the attachment.


Hope it helps!
Attachments:

siddhartharao77: :-)
sanya55: thanks a lot
siddhartharao77: Welcome!
sanya55: can u answer one more ?
siddhartharao77: Will try!
sanya55: okk lemme post it
siddhartharao77: Ok!
sanya55: posted
sanya55: pls have a look
siddhartharao77: Ok!
Answered by rohitkumargupta
5
\large{\mathit{HELLO\:\: DEAR,}}

 \mathit{PROVE \:\: THAT} \: \\ \mathit{2 \cos \frac{\pi}{13} \cos \frac{9\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}

 \mathit{2cos\frac{\pi}{13}cos\frac{9\pi}{13} + cos\frac{3\pi}{13} + cos\frac{5\pi}{13}}<br /><br />\\ \\ \mathit{2cos\frac{\pi}{13}cos\frac{9\pi}{13} + [ cos\frac{5\pi}{13} + cos\frac{3\pi}{13}]}

 \mathit{2cos\frac{\pi}{13}cos\frac{9\pi}{13} + [2cos\frac{\frac{5\pi}{13} + \frac{3\pi}{13}}{2}cos\frac{\frac{5\pi}{13} - \frac{3\pi}{13}}{2}]}
<br /><br />\mathit{\to\to\to\to\to\to\to\to\therefore\boxed{cosx + cosy = 2cos(\frac{x + y}{2})cos(\frac{x - y}{2})}}

 \mathit{2cos\frac{\pi}{13}cos\frac{9\pi}{13} + 2cos\frac{\frac{8\pi}{13}}{2}cos\frac{\frac{2\pi}{13}}{2}}<br />

 \mathit{2cos\frac{\pi}{13}cos \frac{9\pi}{13} + 2cos\frac{4\pi}{13}cos\frac{\pi}{13}}<br />

 \mathit{2cos\frac{\pi}{13}[cos\frac{9\pi}{13} + cos\frac{4\pi}{13}]}
 <br />\mathit{\to\to\to\to\to\to\to\to\therefore\boxed{cosx + cosy = 2cos(\frac{x + y}{2})cos(\frac{x - y}{2})}}

2cos\frac{\pi}{13}[2cos\frac{\frac{9\pi}{13}+\frac{4\pi}{13}}{2}cos\frac{\frac{9\pi}{13} - \frac{4\pi}{13}}{2}]

 \mathit{2cos\frac{\pi}{13}[2cos\frac{\pi}{2}cos\frac{5\pi}{26}]}

 \mathit{2cos\frac{\pi}{13}[2*0*cos\frac{5\pi}{26}]}<br />\\ <br />\mathit{\to\to\to\to\to\to\to\to\therefore\boxed{cos\frac{\pi}{2} = 0}}

<br />\mathit{=0}<br /><br />\\ \\ \mathit{HENCE,} \\ \\ \mathit{2 \cos \frac{\pi}{13} \cos \frac{9\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}

\large{\mathit{\underline{I \: \: HOPE \: \: ITS \: \: HELP \: \: YOU \: \: DEAR,<br />\: \: THANKS}}}

sanya55: thank u sir
rohitkumargupta: :-)
rohitkumargupta: Welcome
Similar questions