heya guys ans this........... plssssssssssssssss
Answers
Let the zeroes of the cubic polynomial
3x³ - 22x² + 48x - 32 = 0
are alpha , alpha + beta , alpha + 2beta
whose are in H. P.
then , 1/alpha , 1/(alpha + beta) &
1/(alpha + 2beta) are in A.P.
Now , 1/a + 1/(a + b) + 1/(a + 2b) = 22/3
(a + b)(a + 2b) + a(a + 2b) + a(a + b)/a(a + b)(a + 2b) = 22/3 -------(1)
1/ a(a + b)(a + 2b) = 32/3 -------(2)
From eq. (1) & (2)
(a + b)(a + 2b) + a(a + 2b) + a(a + b)* 32 = 22
(a + b)(a + 2b) + a(a + 2b) + a(a + b) = 11/16 --(3)
Now ,
1/a(a + b) + 1/(a + b)(a + 2b) + 1/a(a + 2b) = 16
(a + 2b) + a + (a + b) / (3/32) = 16
(3a + 3b) * 32/3 = 16
3(a + b) * 32/3 = 16
(a + b) = 1/2 -------(4)
From eq. (3) -
1/2(1/2 + b) + (1/2 - b)(1/2 + b) + 1/2(1/2 - b) = 11/16
1/2 * (1) + ( 1/4 - b² )= 11/16
3/4 - b² = 11/16
12 - 16b² = 11
16b² = 1
b² = 1/16
b = 1/4
then , a = 1/4
then roots are :- 1/(1/4) , 1/(1/2) & 1/(3/4)
4 , 2 & 4/3
Let the zeroes of the cubic polynomial
3x³ - 22x² + 48x - 32 = 0
are alpha , alpha + beta , alpha + 2beta
whose are in H. P.
then , 1/alpha , 1/(alpha + beta) &
1/(alpha + 2beta) are in A.P.
Now , 1/a + 1/(a + b) + 1/(a + 2b) = 22/3
(a + b)(a + 2b) + a(a + 2b) + a(a + b)/a(a + b)(a + 2b) = 22/3 -------(1)
1/ a(a + b)(a + 2b) = 32/3 -------(2)
From eq. (1) & (2)
(a + b)(a + 2b) + a(a + 2b) + a(a + b)* 32 = 22
(a + b)(a + 2b) + a(a + 2b) + a(a + b) = 11/16 --(3)
Now ,
1/a(a + b) + 1/(a + b)(a + 2b) + 1/a(a + 2b) = 16
(a + 2b) + a + (a + b) / (3/32) = 16
(3a + 3b) * 32/3 = 16
3(a + b) * 32/3 = 16
(a + b) = 1/2 -------(4)
From eq. (3) -
1/2(1/2 + b) + (1/2 - b)(1/2 + b) + 1/2(1/2 - b) = 11/16
1/2 * (1) + ( 1/4 - b² )= 11/16
3/4 - b² = 11/16
12 - 16b² = 11
16b² = 1
b² = 1/16
b = 1/4
then , a = 1/4
then roots are :- 1/(1/4) , 1/(1/2) & 1/(3/4)
4 , 2 & 4/3