Math, asked by IlT, 11 months ago

Héyà Guys ❤❤ !
IIT Based Question!


Plz, solve the Question in attachment.

★ Full explanation required ★

No spam ☺☺ ! ​

Attachments:

Answers

Answered by Anonymous
471

Yep! the question of IIT Main.

Answer:

1 .

Step-by-step explanation:

Given :

 \alpha and  \beta are the roots of equation : x² - x - 1 = 0 .

Then,

 \sf  { \alpha }^{2}  -  \alpha  - 1 = 0. \\  \\  \implies \sf { \alpha }^{2}  - 1 =  \alpha .

 \sf { \beta }^{2}  -  \beta  - 1 = 0. \\  \\  \implies \sf  { \beta }^{2} - 1 =  \beta .

 \sf \because  \frac{a_{2012} - a_{2010}}{a_{2011}}  \\  \\  \sf =  \frac{ \frac{( { \alpha }^{2012} -  { \beta }^{2012})  }{ \alpha  -  \beta }  -  \frac{( { \alpha }^{2010} -  { \beta }^{2010} ) }{ \alpha  -  \beta } }{ \frac{ { \alpha }^{2011} -  { \beta }^{2011}  }{ \alpha  -  \beta } } . \\  \\  \sf =  \frac{ \frac{( { \alpha }^{2012} -  { \beta }^{2012}  -  { \alpha }^{2010}  -  { \beta }^{2010})  }{ \cancel{ (\alpha  -  \beta )}} }{ \frac{ { \alpha }^{2011} -  { \beta }^{2011}  }{ \cancel{( \alpha  -  \beta )}} } . \\  \\  \sf = \frac{ ( { \alpha }^{2012} -  { \beta }^{2012}  -  { \alpha }^{2010}  -  { \beta }^{2010}) }{  { \alpha }^{2011} -  { \beta }^{2011} }. \\  \\  \sf =  \frac{ { \alpha }^{2010}( { \alpha }^{2}  - 1) -  { \beta }^{2010} ( { \beta }^{2}  - 1) }{ { \alpha }^{2011}  -  { \beta }^{2011} } . \\  \\  \sf =  \frac{ { \alpha }^{2010}( \alpha ) -  { \beta }^{2010}( \beta )  }{ { \alpha }^{2011} -  { \beta }^{2011}  } . \\  \\  \sf =  \frac{ { \alpha }^{2011} -  { \beta }^{2011}  }{ { \alpha }^{2011}  -  { \beta }^{2011} } . \\  \\  \huge{ \pink{ \boxed{ \tt = 1.}}}

Hence, it is solved.


Anonymous: Great Answer ; )
Answered by Anonymous
73

Step-by-step explanation:

[refer the attachments]

first of all find the roots of a given equation α and β ,then put it into the an .

Now, we have to find

[a2012 - a2010]/a2011 , So substitute the values of a2012 , a2010 , a2011 with the help of (an). Now simply do the calculations using indices rules and BODMAS property .

Hence we get the final value 1.

Attachments:
Similar questions