HEYA GUYS
_________________________________________
PLEASE SOLVE IT
*****************************************
If cosec theta -- sin theta = m, and
sec theta -- cos theta = n,
Prove that (m^2n)^2/3 + (mn^2)^2/3 = 1
Answers
Answered by
2
Answer:
Step-by-step explanation:
Solution:-
Given cosec theta - sin theta = m, sec theta - cos theta = n
Given that cosec theta - sin theta = m
→ !/sin theta - sin theta = m
⇒ (1-sin² theta)/sin theta = m → cos² theta/sin theta = m
and sec theta - cos theta = n
⇒ 1/cos theta - cos theta = n → (1-cos² theta)/cos theta = n
sin² theta/cos theta = n
Now (m²n)²/³ + (mn²)²/³
⇒ (cos⁴ theta/sin² theta × sin² theta/cos theta)²/³ + (cos² theta/sin theta × sin⁴ theta/cos² theta)²/³
⇒ (cos³ theta)²/³ + (sin³ theta)²/³
⇒cos² theta + sin² theta
= 1 Hence proved
kaete:
Thanks a lot
Similar questions