Heya Guys...
Prove that sec²θcosec²θ - 2 - cot²θ = tan²θ?
Please answer it fast tomorrow is my exam!!!!
Answers
Answered by
1
sec²θcosec²θ - 2 -cot²θ
= sec²θcosec²θ - 1 - 1 -cot²θ
= sec²θcosec²θ - 1 - (1 + cot²θ)
= sec²θcosec²θ -1 - cosec²θ [ 1+ cot²A = cosec²A ]
= cosec²θ(sec²θ - 1) - 1
= cosec²θtan - 1 [ 1 + tan²θ = sec²θ ]
= 1/sin²θ X sin²θ/cos²θ - 1 [ cosecA = 1/sinA ]
= 1/cos²θ - 1
= sec²θ - 1 [ secA = 1/cosA ]
= tan²θ [ 1 + tan²A = sec²A ]
Hence, Proved
Anonymous:
Thanks
Similar questions