Math, asked by HridayAg0102, 1 year ago

Heya Guys ........... Try This

_________________


(1 + cotθ - cosecθ) (1 + tanθ + secθ) = 2

_________________

Prove this fast with proper solution...........

Answers

Answered by rohitkumargupta
3
1+cotθ-cosecθ) (1+tanθ +secθ) 
= (1+ cosθ/sinθ - 1/sinθ) (1+ sinθ/cosθ + 1/cosθ) 
= 1/sinθ[sinθ + cosθ -1] * 1/cosθ[sinθ + cosθ +1] 
= 1/sinθcosθ [(sinθ + cosθ)^2 - 1] 
= 1/sinθcosθ[sin^2θ + 2sinθcosθ + cos^2θ -1] 
Using the identity sin^2θ + cos^2θ = 1 
= 1/sinθcosθ[1 + 2sinθcosθ -1] 
= 2sinθcosθ/sinθcosθ 
= 2 

Now using the identity sin^2θ + cos^2θ =1 
= 2+ [1/sinθcosθ - secθcosecθ] 
= 2 + secθcosecθ - secθcosecθ 
=2
I hope this is right dear

rohitkumargupta: i hope
HridayAg0102: let me check plz
rohitkumargupta: Ok
HridayAg0102: which class!
rohitkumargupta: 11
HridayAg0102: ok
rohitkumargupta: u in 10 n
HridayAg0102: I'm in 10
rohitkumargupta: oo i know
rohitkumargupta: through your questions
Answered by Anonymous
4

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

LHS

(1 + cotθ - cosecθ)(1 + tanθ + secθ)

\tt{\rightarrow(1+\dfrac{cos\theta}{sin\theta}-\dfrac{1}{sin\theta})(1+\dfrac{sin\theta}{cos\theta}+{1}{cos\theta})}

\tt{\rightarrow\dfrac{(sin\theta+cos\theta -1)}{sin\theta}\times\dfrac{(cos\theta+sin\theta+1)}{cos\theta}}

\tt{\rightarrow\dfrac{(sin\theta +cos\theta)-1\times (sin\theta + cos\theta)+1}{sin\theta\times cos\theta}}}

\tt{\rightarrow\dfrac{(sin\theta+cos\theta)^2 -1}{sin\theta cos\theta}}

\tt{\rightarrow\dfrac{sin^2\theta +cos^2\theta +2sin\theta cos\theta -1}{sin\theta cos\theta}}

\tt{\rightarrow\dfrac{1+2sin\theta cos\theta -1}{sin\theta cos\theta}}

\tt{\rightarrow\dfrac{2sin\theta cos\theta}{sin\theta cos\theta}=2}

LHS = RHS

\boxed{\begin{minipage}{11 cm} Fundamental Trignometric Indentities \\ \\ $\sin^{2}\theta+\cos^{2}\theta =1 \\ \\ 1+tan^{2}\theta=\sec^{2}\theta \\ \\ 1 + cot^{2}\theta=\text{cosec}^2\theta \\ \\ tan\theta =\dfrac{sin\theta}{cos\theta} \\ \\ cot\theta =\dfrac{cos\theta}{sin\theta}$\end{minipage}}

Similar questions