Heya Guys ........... Try This
_________________
(1 + cotθ - cosecθ) (1 + tanθ + secθ) = 2
_________________
Prove this fast with proper solution...........
Answers
Answered by
3
1+cotθ-cosecθ) (1+tanθ +secθ)
= (1+ cosθ/sinθ - 1/sinθ) (1+ sinθ/cosθ + 1/cosθ)
= 1/sinθ[sinθ + cosθ -1] * 1/cosθ[sinθ + cosθ +1]
= 1/sinθcosθ [(sinθ + cosθ)^2 - 1]
= 1/sinθcosθ[sin^2θ + 2sinθcosθ + cos^2θ -1]
Using the identity sin^2θ + cos^2θ = 1
= 1/sinθcosθ[1 + 2sinθcosθ -1]
= 2sinθcosθ/sinθcosθ
= 2
Now using the identity sin^2θ + cos^2θ =1
= 2+ [1/sinθcosθ - secθcosecθ]
= 2 + secθcosecθ - secθcosecθ
=2
I hope this is right dear
= (1+ cosθ/sinθ - 1/sinθ) (1+ sinθ/cosθ + 1/cosθ)
= 1/sinθ[sinθ + cosθ -1] * 1/cosθ[sinθ + cosθ +1]
= 1/sinθcosθ [(sinθ + cosθ)^2 - 1]
= 1/sinθcosθ[sin^2θ + 2sinθcosθ + cos^2θ -1]
Using the identity sin^2θ + cos^2θ = 1
= 1/sinθcosθ[1 + 2sinθcosθ -1]
= 2sinθcosθ/sinθcosθ
= 2
Now using the identity sin^2θ + cos^2θ =1
= 2+ [1/sinθcosθ - secθcosecθ]
= 2 + secθcosecθ - secθcosecθ
=2
I hope this is right dear
rohitkumargupta:
i hope
Answered by
4
LHS
(1 + cotθ - cosecθ)(1 + tanθ + secθ)
LHS = RHS
Similar questions