Heya Guys ..........☺
Try this ...........
⚠ DON'T GIVE SPAM ANSWERS OR U WILL BE REPORTED AND UR ANSWER WILL BE DELETED ..............
♠♠♠♠♠♠♠♠♠♠♠
⭐HridayAg0102⭐
✪ BRAINLY BENEFACTOR ✪
Attachments:
Answers
Answered by
4
We have to prove, tanθ/ (1−cotθ) +cotθ /(1−tanθ) =1+tanθ+cotθ
Let us take Left Hand Side (L.H.S.)
⇒tanθ /(1−cotθ) +cotθ/(1−tanθ)
⇒sinθcosθ /(1−cosθsinθ) +cosθsinθ1−sinθcosθ
⇒sinθcosθsinθ−cosθsinθ+cosθsinθcosθ−sinθcosθ
⇒sinθcosθ.sinθsinθ−cosθ+cosθsinθ.cosθ−(sinθ−cosθ)
⇒sin2θcosθsinθ−cosθ−cos2θsinθsinθ−cosθ
⇒sin2θcosθ−cos2θsinθsinθ−cosθ
⇒sin3θ−cos3θsinθcosθsinθ−cosθ
⇒(sinθ−cosθ)(sin2θ+sinθ.cosθ+cos2θ)sinθcosθ.1sinθ−cosθ
⇒sin2θsinθcosθ+sinθ.cosθsinθ.cosθ+cos2θsinθ.cosθ
⇒sinθcosθ+1+cosθsinθ
⇒tanθ+1+cotθ = L. H. S.
Let us take Left Hand Side (L.H.S.)
⇒tanθ /(1−cotθ) +cotθ/(1−tanθ)
⇒sinθcosθ /(1−cosθsinθ) +cosθsinθ1−sinθcosθ
⇒sinθcosθsinθ−cosθsinθ+cosθsinθcosθ−sinθcosθ
⇒sinθcosθ.sinθsinθ−cosθ+cosθsinθ.cosθ−(sinθ−cosθ)
⇒sin2θcosθsinθ−cosθ−cos2θsinθsinθ−cosθ
⇒sin2θcosθ−cos2θsinθsinθ−cosθ
⇒sin3θ−cos3θsinθcosθsinθ−cosθ
⇒(sinθ−cosθ)(sin2θ+sinθ.cosθ+cos2θ)sinθcosθ.1sinθ−cosθ
⇒sin2θsinθcosθ+sinθ.cosθsinθ.cosθ+cos2θsinθ.cosθ
⇒sinθcosθ+1+cosθsinθ
⇒tanθ+1+cotθ = L. H. S.
HridayAg0102:
PLZ give proper illustration
Answered by
2
I hope you understand very well dear
Attachments:
Similar questions