Math, asked by Anonymous, 1 year ago

Heya....^_^

✍ here's the question ⬇



 log_{5}((a + b )\div 3)  =  (log_{5}(a)  +  log_{5}(b)) \div 2
Then ,

(a {}^{4}  +  {b}^{4} ) \div  {a}^{2}  {b}^{2}  =
?


Please don't spam

Require proper explanation

Tysm ☺


mihirsingh12345: gud evening
Anonymous: hlw...sanaya
mybabu: pls mera maths ka ek question delete kar do
mybabu: pls
mybabu: pls do
mybabu: sanaya pls
Anonymous: I'm not a moderator
mybabu: so report it
mybabu: pls
durgeshkame: shanaya please solve my letter s please fast

Answers

Answered by sushant2505
31
Solution :

 log_{5} \left ( \frac{a + b}{3} \right) = \frac{ log_{5}(a) + log_{5}(b) }{2} \\ \\ 2log_{5} \left ( \frac{a + b}{3} \right) = { log_{5}(a) + log_{5}(b) } \\ \\ log_{5} {\left ( \frac{a + b}{3} \right) }^{2} = log_{5}(ab) \\ \\ \Rightarrow \: \: \: {\left ( \frac{a + b}{3} \right) }^{2} = ab \\ \\ \Rightarrow \: \: \: \frac{ {a}^{2} + {b}^{2} + 2ab}{9} = ab \\ \\ \Rightarrow \: \: \: {a}^{2} + {b}^{2} + 2ab = 9ab \\ \\ \Rightarrow \: \: \: {a}^{2} + {b}^{2} = 7ab \\ \\ \text{Squaring both sides, We get}\\ \\ {( {a}^{2} + {b}^{2} )}^{2} = {(7ab)}^{2} \\ \\ \Rightarrow \: \: \:{a}^{4} + {b}^{4} + 2 {a}^{2} {b}^{2} = 49 {a}^{2} {b}^{2} \\ \\ \Rightarrow \: \: \: {a}^{4} + {b}^{4} = 47 {a}^{2} {b}^{2} \\ \\ \Rightarrow \: \: \: \boxed{ \frac{ {a}^{4} + {b}^{4} }{ {a}^{2} {b}^{2} } = 47}

Adityasavita: hello
Anonymous: hi
Adityasavita: hello
Adityasavita: hello
Answered by habibqureshii
3

Answer:

Its your answers................

Attachments:
Similar questions