Heya ..
If a sinθ + b cosθ = c, then prove that a cosθ - b sinθ = √a²+b²-c² .
Follow my 2nd I'd Plz
Answers
Answered by
27
Given , (a sinθ + b cosθ)2 + (a cosθ - b sinθ)2
= a2 sin2 θ b2 cos2 θ + 2ab sinθ cosθ + a2 cos2θ + b2 sin2 θ - 2ab sinθ cosθ
a2 (sin2 θ + cos2 θ ) + b2 (sin2 θ + cos2 θ )
= a2 +b2 ( ∵ sin2 θ + cos2 θ = 1 )
∴ (a sinθ + b cosθ)2 + (a sinθ - b cosθ)2 = a2 +b2
⇒ c2 + (a sinθ - b cosθ)2 = a2 +b2 (∵ a sinθ + b cosθ = c)
⇒ (a cosθ - b sinθ)2 = a2 +b2 - c2
⇒ a cosθ - b sinθ = ± √a2 +b2 - c2
Answered by
13
Squaring both sides we get
Hence proved
Similar questions
Physics,
3 months ago
Science,
3 months ago
Math,
3 months ago
Physics,
8 months ago
Social Sciences,
11 months ago
English,
11 months ago
Social Sciences,
11 months ago