Math, asked by Anonymous, 8 months ago

Heya ..
If a sinθ + b cosθ = c, then prove that a cosθ - b sinθ = √a²+b²-c² .

Follow my 2nd I'd Plz ​

Answers

Answered by Anonymous
27

\underline\bold\red{AnswEr}

Given , (a sinθ + b cosθ)2 + (a cosθ - b sinθ)2

= a2 sin2 θ b2 cos2 θ + 2ab sinθ cosθ + a2 cos2θ + b2 sin2 θ - 2ab sinθ cosθ

a2 (sin2 θ + cos2 θ ) + b2 (sin2 θ + cos2 θ )

= a2 +b2 ( ∵ sin2 θ + cos2 θ = 1 )

∴ (a sinθ + b cosθ)2 + (a sinθ - b cosθ)2 = a2 +b2

⇒ c2 + (a sinθ - b cosθ)2 = a2 +b2 (∵ a sinθ + b cosθ = c)

⇒ (a cosθ - b sinθ)2 = a2 +b2 - c2

⇒ a cosθ - b sinθ = ± √a2 +b2 - c2

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \displaystyle \: a sinθ + b cosθ = c

Squaring both sides we get

 \displaystyle \:  {( \: a sinθ + b cosθ\:) }^{2}   \:   = {c}^{2}

 \implies \:  \displaystyle \:  {(a sinθ)}^{2}  +  \: 2 \times a sinθ \times \: b cosθ\: +  {( \:   b cosθ\:) }^{2}   \:   = {c}^{2}

 \implies \:  \displaystyle \:  {a}^{2}  {sin}^{2} θ +  \: 2  ab sinθ  cosθ\: +      {b}^{2} {cos}^{2} θ  \:   = {c}^{2}

 \implies \:  \displaystyle \:  {a}^{2} (1 -  {cos}^{2} θ )+  \: 2  ab sinθ  cosθ\: +      {b}^{2} (1 - {sin}^{2} θ  )\:   = {c}^{2}

 \implies \:  \displaystyle \:  {a}^{2}  {cos}^{2} θ   -   \: 2  ab sinθ  cosθ\: +      {b}^{2} {sin}^{2} θ  \:   = {a}^{2}  +  {b}^{2}  -  {c}^{2}

 \implies \:  \displaystyle \:  {( \: a cosθ -   b sinθ\:) }^{2}   \:   =  {a}^{2} +  {b}^{2}  -  {c}^{2}

 \displaystyle \:  \therefore \: a cosθ - b sinθ = √a²+b²-c² .

Hence proved

Similar questions