Math, asked by Anonymous, 10 months ago

Heya!

If \alpha and \beta in the equation are {x}^{2} - 5x - 6 = 0 , then find the value of {\alpha}^{2} - {\beta}^{2}
________________________
Dun post unsolicited answers! ​

Answers

Answered by satyam2060
7

Answer:

hope it helps you

please mark brainliest

Attachments:
Answered by Anonymous
30

Answer:

✩ Given Polynomial : \sf{x}^{2} - 5x - 6 = 0

Given that \alpha and \beta are the Zeroes of the Polynomial.

\rule{100}{0.8}

\underline{\boldsymbol{Zeroes\: of \:the\: given\: Polynomial :}}

:\implies\sf x^2-5x-6=0\\\\\\:\implies\sf x^2-(6-1)x-6=0\\\\\\:\implies\sf x^2-6x+x-6=0\\\\\\:\implies\sf x(x-6)+1(x-6)=0\\\\\\:\implies\sf (x - 6)(x + 1)=0\\\\\\:\implies\sf \alpha = 6\:or\:-\:1 \qquad\beta = -\:1\:or\:6

\rule{150}{1.5}

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\bigstar\sf\:when\:\:\alpha=6\:and\:\beta=-\:1\\\\\dashrightarrow\sf\:\:{\alpha}^{2} - {\beta}^{2}\\\\\\\dashrightarrow\sf\:\:(6)^2-(-\:1)^2\\\\\\\dashrightarrow\sf\:\:36 - 1\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf 35}}\\\\\\\bigstar\sf\:when\:\:\alpha=-\:1\:and\:\beta=6\\\\\dashrightarrow\sf\:\:{\alpha}^{2} - {\beta}^{2}\\\\\\\dashrightarrow\sf\:\:(-\:1)^2-(6)^2\\\\\\\dashrightarrow\sf\:\:1 - 36\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf -\:35}}

\therefore\:\underline{\textsf{Hence, required value of the given is \textbf{$\pm$ 35}}}.

Similar questions