Math, asked by Anjeelina, 1 year ago

heya mate solve it...

Attachments:

MrThakur14Dec2002: Solution only one condition :-
MrThakur14Dec2002: u follow me !!
Anjeelina: kkk
MrThakur14Dec2002: Chlo koi nhi "AS UR WISH"........... I do my work ...... ☺☺☺

Answers

Answered by MrThakur14Dec2002
3

lim  \:  \:  \:  \:  \frac{ \sqrt{x  +  h}  -  \sqrt{x} }{h} \\ h  = 0

Now, Rationalise the Numerator.


lim \:  \:  \:  \:  \:  \:  \: \:  \frac{( \sqrt{x + h}  -  \sqrt{x} \: )( \:  \sqrt{x + h}  +  \sqrt{x}  \: )  }{h( \sqrt{x + h}  +  \sqrt{x} }     \\ h = 0




lim \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ {( \:  \sqrt{x + h} )}^{2}   -  {( \: \sqrt{x}  )}^{2} }{h( \sqrt{x + h}  +  \sqrt{x} }  \\ h = 0



lim  \:  \:  \:  \:  \:  \:  \frac{x + h - x}{h( \sqrt{x + h}  +  \sqrt{x} )} \\ h = 0




lim   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{h}{h( \sqrt{x + h} +  \sqrt{x} ) } \\ h = 0







lim  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{\: ( \:  \sqrt{x + h}  \:  +  \:  \sqrt{x} \:  )} \\ h = 0




Now, Substitute the value of h ---- 0


 \frac{1}{ \sqrt{x + 0} +  \sqrt{x}  }  \\  \\  \\  =  \:  \frac{1}{ \sqrt{x}  +  \sqrt{x} }  \\  \\  \\  =  \:  \frac{1}{2 \sqrt{x} } ..............is \: the \: answer \: of \: your \: question.




 \\  \\  \\ hope \: this \: will \: help \: you............... \\  \\  \\  \\  \\  \\ be \: brainly................






☛ ⛧⛧ By, Ⓜr. Thakur ⛧⛧




MrThakur14Dec2002: Have you any doubt then ask me.
Anjeelina: no
Anjeelina: I understand
MrThakur14Dec2002: Ok ☺☺☺
Anjeelina: it's easy after u solve...
MrThakur14Dec2002: Hm ...... I m also in class 11th with maths
Similar questions