Math, asked by JaiHind01, 1 year ago

Heya Mates❤️

➡️ Prove that tan(π/16) + 2×tan(π/8) + 4 = cot(π/16) .

☑️Please provide proper solution.​

Answers

Answered by Anonymous
274

Answer:

tan(π/16) + 2×tan(π/8) + 4 = cot(π/16)

Hence Proved !!

❤️Hope it will help you.❤️

Attachments:
Answered by Anonymous
16

Answer:

 \green{ \huge \boxed{solution}} \\  \\  \\ we \: have \: to \: take \\  \\ cot \theta \:  - tan \theta \:  =  \frac{cos \theta}{sin \theta}  -  \frac{sin \theta}{cos \theta}  \\  \\  \\  so \:  \\ cot \theta  -  tan \theta = 2cot2 \theta \\  \\  \\  \\ tan \theta =  \: cot \theta \:  - 2cot2 \theta \\  \\ tan \frac{ \pi}{16}  + 2tan \frac{ \pi}{8}  + 4 \\  \\  = cot \frac{ \pi}{16}  - 2cot \frac{ \pi}{8}  + 2 \bigg(cot \frac{ \pi}{8}  - 2cot \frac{ \pi}{4}  \bigg) + 4 \\  \\  = cot \frac{ \pi}{8}  - 4cot  \frac{ \pi}{4}  + 4 \\  \\  = cot  \frac{ \pi}{16}  \\  \\ proved

Similar questions