❗❗Heya❗❗
❌No Spam❌
❕ Urgent❕
Answers
Hello Dear Friend
Question :
Given :
Solution :
✯ To rationlize the numerator, multiply the numerator and denominator
by conjugate of the radical :
➜ Simplify the numerator
Simplify
➜ Simplify
Hope you got the answer required !!!
Answer:
ationalizenumerator
C
2
1+C
3
−
1−C
3
Given :
\bf{\dfrac{\sqrt{1+C^3}-\sqrt{1-C^3}}{C^2}}
C
2
1+C
3
−
1−C
3
Solution :
\bf{Multiply\:by\:the\:conjugate}\:\dfrac{\sqrt{1+C^3}+\sqrt{1-C^3}}{\sqrt{1+C^3}+\sqrt{1-C^3}}Multiplybytheconjugate
1+C
3
+
1−C
3
1+C
3
+
1−C
3
✯ To rationlize the numerator, multiply the numerator and denominator
by conjugate of the radical : \bf{\sqrt{1+C^{3}}-\sqrt{1-C^{3}}
=\tt{\dfrac{\left(\sqrt{1+C^3}-\sqrt{1-C^3}\right)\left(\sqrt{1+C^3}+\sqrt{1-C^3}\right)}{C^2\left(\sqrt{1+C^3}+\sqrt{1-C^3}\right)}}=
C
2
(
1+C
3
+
1−C
3
)
(
1+C
3
−
1−C
3
)(
1+C
3
+
1−C
3
)
➜ Simplify the numerator
\bf{\left(\sqrt{1+C^3}-\sqrt{1-C^3}\right)\left(\sqrt{1+C^3}+\sqrt{1-C^3}\right)}(
1+C
3
−
1−C
3
)(
1+C
3
+
1−C
3