Hèÿã !!
#No Spamming#
CLASS - X
CH - 10
CIRCLES
Attachments:
Answers
Answered by
12
angle OXY + angle XYO + angle O =180° (sum angle property)
b + 90° (as tangent is perpendicular to radius) + angle XOY = 180°
angle XOY = 180° -90°-x
angle XOY =90° - x
Now, OA = AY (radii of same circle)
So, angle AYO = angle XOY or AOY= 90°-x
In ∆ OAY
angle OAY+ angle AYO+ angle AOY =180° (sum angle property)
angle OAY + angle AYO + angle AYO =180°
angle OAY +2 angle AYO =180°
90-b +2 AYO=180°
2 angle AYO =180 -90 +b
angle AYO = 90+b/2 = angle OYA ---(1)
Now, Angle AYX = a and Angle OYX =90°
angle OYA =90 - a= OAY ---(2)
From 1 and 2
90+b =2(90-a)
90+b=180-2a
b+2a =180-90
b +2a =90
Hence proved
b + 90° (as tangent is perpendicular to radius) + angle XOY = 180°
angle XOY = 180° -90°-x
angle XOY =90° - x
Now, OA = AY (radii of same circle)
So, angle AYO = angle XOY or AOY= 90°-x
In ∆ OAY
angle OAY+ angle AYO+ angle AOY =180° (sum angle property)
angle OAY + angle AYO + angle AYO =180°
angle OAY +2 angle AYO =180°
90-b +2 AYO=180°
2 angle AYO =180 -90 +b
angle AYO = 90+b/2 = angle OYA ---(1)
Now, Angle AYX = a and Angle OYX =90°
angle OYA =90 - a= OAY ---(2)
From 1 and 2
90+b =2(90-a)
90+b=180-2a
b+2a =180-90
b +2a =90
Hence proved
Anonymous:
thank you
Answered by
2
Angle OXY + angle XYO + angle O =180° (sum angle property)
b + 90° + angle XOY = 180°
angle XOY = 180° -90°-x
angle XOY =90° - x
Now, OA =AY
So, angle AYO = angle XOY or AOY= 90°-x
In ∆ OAY
angle OAY + angle AYO + angle AYO =180°
angle OAY +2 angle AYO =180°
90-b +2 AYO=180°
2 angle AYO =180 -90 +b
angle AYO = 90+b/2 = angle OYA ---(1)
Now, Angle AYX = a and Angle OYX =90°
angle OYA =90 - a= OAY ---(2)
From 1 and 2
90+b =2(90-a)
90+b=180-2a
b+2a =180-90
b +2a =90
Hence proved
Similar questions