Math, asked by Anonymous, 1 year ago

Heya❤️

♐Pls answer the above question ♐

❌❌No Spamming ❌❌​

Attachments:

Answers

Answered by Anonymous
32

Solution :-

Given that :-

 f(x) = log\left(\dfrac{1+x}{1-x}\right)

-1 < x < 1 .

Now by applying the log property.

 f(x) = log(1+x) - log(1-x)

Now we will Substitute

 x \: by \: \dfrac{3x + x^3}{1 + 3x^2}

 \small{\rightarrow f\left(\dfrac{3x + x^3}{1 + 3x^2}\right) = log\left(1+\dfrac{3x + x^3}{1 + 3x^2}\right) - log\left(1-\dfrac{3x + x^3}{1 + 3x^2}\right)}

\small{\rightarrow f\left(\dfrac{3x + x^3}{1 + 3x^2}\right) = log\left(\dfrac{x^3 + 3x^2 + 3x + 1}{1 + 3x^2}\right) - log\left(\dfrac{-(x^3 - 3x^2 + 3x - 1)}{1 + 3x^2}\right)}

\small{\rightarrow f\left(\dfrac{3x + x^3}{1 + 3x^2}\right) = log\left(\dfrac{(x+1)^3}{1 + 3x^2}\right) - log\left(\dfrac{(-)(x-1)^3}{1 + 3x^2}\right)}

 \small{\rightarrow f\left(\dfrac{3x + x^3}{1 + 3x^2}\right) = log[(x+1)^3] - log[(1+3x^2)] - log[(-)(x-1)^3] + log[(1+3x^2)] }

 \rightarrow f\left(\dfrac{3x + x^3}{1 + 3x^2}\right) = 3log[(x+1)] - 2log[(x-1)] - log[(1-x)]

Now

 x \: by \: \dfrac{2x}{1 + x^2}

\small{\rightarrow f\left(\dfrac{2x}{1 + x^2}\right) = log\left(1+\dfrac{2x }{1 + x^2}\right) - log\left(1-\dfrac{2x }{1 + x^2}\right)}

\small{\rightarrow f\left(\dfrac{2x }{1 + x^2}\right) = log\left(\dfrac{ x^2 + 2x + 1}{1 + 3x^2}\right) - log\left(\dfrac{x^2 - 3x +1}{1 + 3x^2}\right)}

\small{\rightarrow f\left(\dfrac{2x }{1 + x^2}\right) = log\left(\dfrac{(x+1)^2}{1 + 3x^2}\right) - log\left(\dfrac{(x-1)^2}{1 + 3x^2}\right)}

\small{\rightarrow f\left(\dfrac{2x}{1 + x^2}\right) = log[(x+1)^2] - log[(1+x^2)] - log[(x-1)^2] + log[(1+x^2)] }

 \rightarrow f\left(\dfrac{2x}{1 + x^2}\right) = 2log[(x+1)] - 2log[(x-1)]

Now

 f\left(\dfrac{3x + x^3}{1 + 3x^2}\right)  - f\left(\dfrac{2x}{1 + x^2}\right)

\small{=  3log[(x+1)] - 2log[(x-1)] - log[(1-x)] -( 2log[(x+1)] - 2log[(x-1)] )}

 \small{=3log[(x+1)] - 2log[(x-1)] - log[(1-x)] - 2log[(x+1)] + 2log[(x-1)]}

 = log[(x+1)] - log[(1-x)]

 = log\left(\dfrac{1+x}{1-x}\right)

 = f(x)

So Answer is option (d)

Answered by Anonymous
19

Step-by-step explanation:

[refer the attachments for the Explanation ]

ANS : option d ] (f(x)) is correct................

formulae used :

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

log rule :

log (a/b) = log a - log b

Attachments:
Similar questions