Heya!! ❤️
Prove that :-
cosα + cos( 120° + α ) + cos ( 120° - α ) = 0
Answers
Solution :
L.H.S. = cosα + cos(120° + α) + cos(120° - α)
= cosα + cos120° cosα - sin120° sinα + cos120° cosα + sin120° sinα
= cosα + 2 cos120° cosα
= cosα + 2 cosα cos(90° + 30°)
= cosα + 2 cosα (- sin30°)
= cosα + 2 cosα (- ½)
= cosα - cosα
= 0
= R.H.S.
Hence, proved.
More about Trigonometry :
It is the study of angles and the relationships between the angles and ratios sine, cosine, tangent, cosectant, sectant, cotangent.
Some formulas are -
sin²A + cos²A = 1
sec²A - tan²A = 1
cosec²A - cot²A = 1
sin(90° - A) = cosA
cos(90° - A) = sinA
sin(90° + A) = cosA
cos(90° + A) = - sinA
sinA * cosecA = 1
cosA * secA = 1
tanA * cotA = 1
cos(A + B) = cosA cosB - sinA sinB
cos(A - B) = cosA cosB + sinA sinB
sin(A + B) = sinA cosB + cosA sinB
sin(A - B) = sinA cosB - cosA sinB
QUESTION :
cosα + cos( 120° + α ) + cos ( 120° - α ) = 0
Proof:
Taking L. H. S
=cosα + cos (120-α) + cos (120+α)
=cosα + 2cos [(120-α+120+α) /2] cos [(120-α-120-α) /2]
=cosα + 2cos120 cos(-α)
=cosα+ 2cos(180-60) cosα
=cosα + 2 (-cos 60) cosα
= cosα - 2 × 1/2 cosα
= cosα - cosα
=0 = R. H. S