Heya!!
Ques:- If tan A=nTan B and sin A=m sin B, prove that cos^2 A=m^2-1/n^2-1
❌Spammers will be reported ❌
Answers
Answered by
0
i.e sinA/cosA=m.sinB/cosB
i.e sinA/sinB=m.cosA/cosB
i.e n.cosB=m.cosA ……..[from (1)]
Squaring both sides gives:
n2.cos2B=m2.cos2A
i.e n2.(1−sin2B)=m2.cos2A
i.e n2.(1−(sin2A/n2))=m2.cos2A …….[squaring (1)]
i.e n2−sin2A=m2.cos2A
i.e n2−1+cos2A=m2.cos2A [since sin^2A = 1 - cos^2A]
i.e n2−1=m2.cos2A−cos2A
i.e n2−1=cos2A(m2−1)
Hence, cos2A=(n2−1)/(m2−1)
i.e sinA/sinB=m.cosA/cosB
i.e n.cosB=m.cosA ……..[from (1)]
Squaring both sides gives:
n2.cos2B=m2.cos2A
i.e n2.(1−sin2B)=m2.cos2A
i.e n2.(1−(sin2A/n2))=m2.cos2A …….[squaring (1)]
i.e n2−sin2A=m2.cos2A
i.e n2−1+cos2A=m2.cos2A [since sin^2A = 1 - cos^2A]
i.e n2−1=m2.cos2A−cos2A
i.e n2−1=cos2A(m2−1)
Hence, cos2A=(n2−1)/(m2−1)
Answered by
9
hi
hope my answer help you...
then plz mark me brainlist...
silu12
be BRAINLY ♥️✌️
hope my answer help you...
then plz mark me brainlist...
silu12
be BRAINLY ♥️✌️
Attachments:
Similar questions