HEYA.....Rhythm here :-)
.
.
.
.
.
________________
(1) WHICH OF THE
FOLLOWING IS NOT CORRECT ?
(A) Cos 1° > Cos 1
(B) Cos 1° < Cos 1
(C) Sin 1° = Cos 1
(D) Sin 1° = Sin 1
________________
(2) In A Triangle tanA + tanB + tanC = 6 and tanA tanB = 2 ,
then the values of tanA ,tanB and tanC are
(A) 1,2,3
(B) 2,1,3
(C) 1,2,0
(D) None of these
_________________
■ Need full explaination with reason
◆ NO USELESS ANSWERS
● 30 POINTS
Answers
Answered by
3
(1)
cos 1 degree = 0.999
cos 1 radian = 0.540
sin 1 degree = 0.017
sin 1 radian = 0.841.
Option Verification:
(A) cos 1 degree > cos 1
= > True.
(B) cos 1 degree < cos 1
= > False
(C) sin 1 degree = cos 1
= > False
(D) sin 1 degree = sin 1
= > False.
Therefore the correct answer is - Option(A) : cos 1 degree > cos 1 radian.
(2)
Given tanA + tanB+ tanC = 6 ------- (1)
Given tanAtanB = 2
= > tanB = 2/tanA ----- (2)
Given A + B + C = 180
= > A + B = 180 - C
= > Tan(A + B) = Tan(180 - C)
= > TanA + TanB/1 - TanATanB = -Tanc
= > 6 - Tanc/1 - 2 = -Tanc
= > Tanc = 6 - Tanc
= > 2Tanc = 6
= > Tanc = 3
Substitute in (1), we get
= > tanA + tanB + 3 = 6
= > tanA + tanB = 3
= > tanA + 2/tanA = 3
= > tan^2A + 2 - 3tanA = 0
= > tan^2A - 2tanA - tanA + 2 = 0
= > (tanA - 1)(tanA - 2) = 0
= > tan A = 1 (or) 2
Substitute A = 1 in (1), we get
= > 1 + tanA + 3 = 6
= > tanA + 4 = 6
= > tanA = 2
Substitute A = 2 in (2), we get
= > 2 + tanB + 3 = 6
= > tanB + 5 = 6
= > tanB = 1.
Therefore the value of tanA , tanB = 1 (or) 2 and tanC =3.
Hope this helps!
cos 1 degree = 0.999
cos 1 radian = 0.540
sin 1 degree = 0.017
sin 1 radian = 0.841.
Option Verification:
(A) cos 1 degree > cos 1
= > True.
(B) cos 1 degree < cos 1
= > False
(C) sin 1 degree = cos 1
= > False
(D) sin 1 degree = sin 1
= > False.
Therefore the correct answer is - Option(A) : cos 1 degree > cos 1 radian.
(2)
Given tanA + tanB+ tanC = 6 ------- (1)
Given tanAtanB = 2
= > tanB = 2/tanA ----- (2)
Given A + B + C = 180
= > A + B = 180 - C
= > Tan(A + B) = Tan(180 - C)
= > TanA + TanB/1 - TanATanB = -Tanc
= > 6 - Tanc/1 - 2 = -Tanc
= > Tanc = 6 - Tanc
= > 2Tanc = 6
= > Tanc = 3
Substitute in (1), we get
= > tanA + tanB + 3 = 6
= > tanA + tanB = 3
= > tanA + 2/tanA = 3
= > tan^2A + 2 - 3tanA = 0
= > tan^2A - 2tanA - tanA + 2 = 0
= > (tanA - 1)(tanA - 2) = 0
= > tan A = 1 (or) 2
Substitute A = 1 in (1), we get
= > 1 + tanA + 3 = 6
= > tanA + 4 = 6
= > tanA = 2
Substitute A = 2 in (2), we get
= > 2 + tanB + 3 = 6
= > tanB + 5 = 6
= > tanB = 1.
Therefore the value of tanA , tanB = 1 (or) 2 and tanC =3.
Hope this helps!
siddhartharao77:
:-)
Similar questions
Science,
8 months ago
English,
8 months ago
Math,
1 year ago
Physics,
1 year ago
Environmental Sciences,
1 year ago