Math, asked by Anonymous, 5 days ago

Heya !

f(x) =  \dfrac{1}{ {x}^{2}  -  x + 1 }
Find range of the function.​

Answers

Answered by Anonymous
7

 \huge{ \rm\left(0 , \dfrac{4}{3} \right ]}

\Large{\underline{\underline{\text{Explanation:}}}}

Method 1:

For any polynomial of the form \rm ax^2 + bx + c where  \rm a > 0 , it's range is given by \rm \left[\dfrac{-D}{4a} , \infty\right) where  \rm D = b^2 - 4ac or simply the discriminant.

Consider the denominator of given function,

 \longrightarrow \rm  {x}^{2}  - x + 1

Here,

  • a = 1
  • b = -1
  • c = 1

Finding determinant:

 \cdot \cdot \cdot \longrightarrow \rm D = ( - 1)^{2}  - 4(1)(1)

 \cdot \cdot \cdot \longrightarrow \rm D = 1 - 4

 \cdot \cdot \cdot \longrightarrow \rm D = - 3

So, the range of denominator is given by,

 \implies \rm\left[\dfrac{-D}{4a} , \infty\right)

 \implies \rm\left[\dfrac{-( - 3)}{4(1)} , \infty\right)

 \implies \rm\left[\dfrac{3}{4} , \infty\right)

Range of  \rm x^2 - x + 1 is  \rm\left[\dfrac{3}{4} , \infty\right) therefore the range of given function is  \rm \left(0 , \dfrac{4}{3} \right ].

Method 2:

Consider the denominator of given function,

 \longrightarrow \rm  {x}^{2}  - x + 1

Using completing the square,

 \longrightarrow  \rm\left( x - \dfrac{1}{2}  \right)^2 +  \dfrac{3}{4}

So clearly it's range is \left[\dfrac{3}{4} , \infty\right). and hence the range of original function is  \rm \left(0 , \dfrac{4}{3} \right ]

\Large{\underline{\underline{\text{Note that:}}}}

Since the denominator is ranging from \left[ \dfrac{3}{4} , \infty\right) and the numerator is  1, this gives us following results:

  • If denominator is \rm \infty , \ f(x) \to 0
  • If denominator is  \rm \dfrac{3}{4}, \ f(x) = \dfrac{4}{3} .

\Large{\underline{\underline{\text{Answer:}}}}

 \rm 0 < f(x) \leqslant \dfrac{4}{3}

Answered by prashastirathore7
3

Answer:

!!!! answer my Question !!!

Similar questions