HEYA USERS !!
^Answer both the Questions (15,16) from the Attachment^
★Content Quality Required★
#no spamming
Attachments:
Swarup1998:
I am unable to answer it. I am not getting the option to "ANSWER" =_=
Answers
Answered by
4
hope it helps u ....
Attachments:
Answered by
17
The answer is given below :
[My keyboard doesn't have vector sign. So I am using A' to denote A vector, B' to denote B vector and C' to denote C vector.]
15.
Given,
A' + B' = C' .....(i)
Now, taking dot product of A' to both sides of (i), we get
A' . (A' + B') = A' . C'
⇒ A' . A' + A' . B' = A' . C'
⇒ A² + A'. B' = A' . C', since A' . A' = A²
.....(ii)
Again, taking dot product of B' to both sides of (i), we get
B' . (A' + B') = B' . C'
⇒ B' . A' + B' . B' = B' . C'
⇒ A' . B' + B² = B' . C', since A' . B' = B' . A' and B' . B' = B²
.....(iii)
Now, adding (ii) and (iii) no equations, we get
A² + A' . B' + A' . B' + B² = A' . C' + B' + C'
⇒ 2 A' . B' + A² + B² = (A' + B') . C'
⇒ 2 A' . B' + A² + B² = C' . C', by (i)
⇒ 2 A' . B' + A² + B² = C², since C' . C' = C²
⇒ 2 A' . B' + (A + B)² - 2AB = C²
⇒ 2 A' . B' + C² - 2AB = C², since A + B = C
⇒ 2AB cosθ = 2AB, where θ is the angle between A' and B', A' . B' = AB cosθ
⇒ cosθ = 1
⇒ cosθ = cos 0
⇒ θ = 0
Since, the angle between the vectors A' and B' is 0°, the two vectors A' and B' are parallel to each other.
16.
Now,
L.H.S.
= (A' + 2B') . (2A' - 3B')
= A' . 2A' - A' . 3B' + 2B' . 2A' - 2B' . 3B'
= 2 A' . A' - 3 A' . B' + 4 A' . B' - 6 B' . B',
since A' . B' = B' . A'
= 2 A² - 3 AB cosθ + 4 AB cosθ - 6 B²,
since A' . A' = A² and θ being the angle between A' and B', A' . B' = AB cosθ
= 2 A² + AB cosθ - 6 B²
= R.H.S. [Proved]
(These solutions are similar to the previous answerer. Sorry for that.)
Thank you for your question.
[My keyboard doesn't have vector sign. So I am using A' to denote A vector, B' to denote B vector and C' to denote C vector.]
15.
Given,
A' + B' = C' .....(i)
Now, taking dot product of A' to both sides of (i), we get
A' . (A' + B') = A' . C'
⇒ A' . A' + A' . B' = A' . C'
⇒ A² + A'. B' = A' . C', since A' . A' = A²
.....(ii)
Again, taking dot product of B' to both sides of (i), we get
B' . (A' + B') = B' . C'
⇒ B' . A' + B' . B' = B' . C'
⇒ A' . B' + B² = B' . C', since A' . B' = B' . A' and B' . B' = B²
.....(iii)
Now, adding (ii) and (iii) no equations, we get
A² + A' . B' + A' . B' + B² = A' . C' + B' + C'
⇒ 2 A' . B' + A² + B² = (A' + B') . C'
⇒ 2 A' . B' + A² + B² = C' . C', by (i)
⇒ 2 A' . B' + A² + B² = C², since C' . C' = C²
⇒ 2 A' . B' + (A + B)² - 2AB = C²
⇒ 2 A' . B' + C² - 2AB = C², since A + B = C
⇒ 2AB cosθ = 2AB, where θ is the angle between A' and B', A' . B' = AB cosθ
⇒ cosθ = 1
⇒ cosθ = cos 0
⇒ θ = 0
Since, the angle between the vectors A' and B' is 0°, the two vectors A' and B' are parallel to each other.
16.
Now,
L.H.S.
= (A' + 2B') . (2A' - 3B')
= A' . 2A' - A' . 3B' + 2B' . 2A' - 2B' . 3B'
= 2 A' . A' - 3 A' . B' + 4 A' . B' - 6 B' . B',
since A' . B' = B' . A'
= 2 A² - 3 AB cosθ + 4 AB cosθ - 6 B²,
since A' . A' = A² and θ being the angle between A' and B', A' . B' = AB cosθ
= 2 A² + AB cosθ - 6 B²
= R.H.S. [Proved]
(These solutions are similar to the previous answerer. Sorry for that.)
Thank you for your question.
Similar questions