Heya Users___________❤❤
Question is in attachment
Solve plZz
Tysm☺
Attachments:
Answers
Answered by
15
Now,
∫ (cotx + x) cot²x dx
= ∫ (cotx + x) (cosec²x - 1) dx [∵cosec²x - cot²x = 1]
= ∫ cotx cosec²x dx - ∫ cotx dx + ∫ x cosec²x dx - ∫ x dx ...(1)
______
∴ ∫ cotx cosec²x dx
= ∫ cotx d (- cotx)
= - (cot²x)/2
Here, ∫ cotx dx
= log (sinx)
∴ ∫ x cosec²x dx
= x ∫ cosec²x dx - ∫ {d/dx (x) × ∫ cosec²x dx} dx
= x (- cotx) - ∫ (- cotx) dx [∵ d/dx (x) = 1 ]
= - x cotx + ∫ cotx dx
= - x cotx + log (sinx)
∴ ∫ x dx
= (x²)/2
From (i), we get the required integral as
∫ (cotx + x) cot²x dx
= - (cot²x)/2 - log (sinx) - x cotx + log (sinx) - (x²)/2 + c, where c is integral constant
= - (cot²x)/2 - x cotx - (x²)/2 + c
#
FuturePoet:
wow
Answered by
1
Answer:
I love you mom dad and one person in my life
Similar questions