Math, asked by yogichaudhary, 1 year ago

HeYaAa♡all BrAiNlY ShiNeStArS_______♡My qUeStiØn is :--
===========================
● In An EqÜilaTeRaL tRiAnGle ABC, D iS a pØint oN siĐe BC sŮcH that BD = 1/3 BC. PrØvE ThAt 9AD^2=7AB^2.
===========================​

Answers

Answered by Anonymous
62

\large{\underline{\underline{\mathfrak{\red{\sf{Explanation-}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\orange{\boxed{\pink{\underline{\red{\mathfrak{Given-}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ∆ABC is an equilateral triangle.

  • BD = \dfrac{1}{3}BC

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\orange{\boxed{\pink{\underline{\red{\mathfrak{To\:Prove-}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • 9AD² = 7AB²

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\orange{\boxed{\pink{\underline{\red{\mathfrak{Construction-}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Draw AE ⊥ BC such that BE = EC = \dfrac{BC}{2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\orange{\boxed{\pink{\underline{\red{\mathfrak{Proof-}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

In AED, by using Pythagoras theorem,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\red{AD^2=AE^2+ED^2}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{AD^2=AE^2+(BE-BD)^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\underline{\mathfrak{\sf{\blue{(a-b)^2=a^2+b^2-2ab}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{AD^2=AE^2+(BE^2+BD^2-2.BE.BD)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using given and construction,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{AD^2=AB^2+(\dfrac{BC}{3})^2-\cancel{2}.\dfrac{BC}{\cancel{2}}.\dfrac{BC}{3}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{AD^2=AB^2+\dfrac{BC^2}{9}-\dfrac{BC^2}{3}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By taking LCM,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{AD^2=\dfrac{9AB^2+AB^2-3AB^2}{9}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{AD^2=\dfrac{7AB^2}{9}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By cross multiplying,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\huge{\underline{\underline{\boxed{\mathfrak{\sf{\purple{9AD^2=7AB^2}}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence proved!

Attachments:
Answered by snehabharti20
1

Step-by-step explanation:

Refer to the attachment........

Attachments:
Similar questions