heyaaaa please solve this question
don't post irrelevant answer
need errorless answer
Answers
in ∆ ABC ,
A+B+C = 180° = π rads
=> A+B = π-C => cos (A+B) = cos (π-C) = - cos C
=> sin (A+B) = sin (π-C) = sin C
=> B+C = π-A => cos (B+C) = cos (π-A) = -cosA
=> sin (B+C) = sin (π-A) = sin A
PT => 1) cos A cos C + (-cos C)(-cos A) = 2 cos A cos C
and cos A sin C - (sin C)(-cos A) = 2 cos A sin C
=> divide, we get ,
=> LHS = 2 cos A cos C / 2 cos A sin C
=> cot C = RHS
Formula used => sin ( π - A ) = sin A and
cos (π-A) = - cos A
2)))
similarly , tan (A+B) = tan (π-C) = -tan C
tan (B+C) = tan (π-A) = -tanA
tan (C+A) = tan (π-B) = -tan B
and tan (π-A) = - Tan A ,
tan (2π - B) is an angle in the fourth quadrant where tan of an angle is negative .
=> tan (2π - B)= -tan B
and tan (3π - C) is an angle in second quadrant where the tangent of an angle is negative
=> tan (3π-C) = -tan C
now ,
=> LHS => (- tan C - tan B - tan A )/( - tan A - tan B - tan C )
=> 1 = RHS
Formulas used => tan ( π- A) = - tan A