Math, asked by varshini1101, 9 months ago

Heyla peeps :D

Please answer to this question.

spammers stay away please :)

thanks <3!!❤️​

Attachments:

Answers

Answered by BrainlyHulk
5

Hi Varshu

Answer:

Let

{l}^{1}  =  {c}^{x}  {G}^{y} ( \frac{e{}^{2}}{2\pi \: Ę} ) {}^{z}

c = {{l \: t {}^{ - 1} }} \\ G =  {m}^{ - 1} l {}^{3}  {t}^{ -  2}  \\  \frac{e {}^{2} }{4\pi \: Ę}  = ml {}^{3}  {t}^{ - 2}  \\  \\ l = (l \: t {}^{ - 1} ) {}^{x}  {({m}^{ - 1} l {}^{3}  {t}^{ -  2})}^{y} (ml {}^{3}  {t}^{ - 2} ) {}^{z}  \\  \\  {m}^{0} l {}^{1}  t {}^{0} =  {l}^{x + 3y + 3z}   \: {m}^{ - y + z}  \:  {t}^{ - x - 2y - 2z)  }

by comparing powers we get

x+3y+3z = 1

-y+z = 0

x+2y+2z=0

When we solve these equations, we get

x = -2

y= 1/2 and z=1/2

There your answer is

 {c}^{ - 2}  {G\frac{ {e}^{2} }{4\pi \: Ę} }^{ \frac{1}{2} }

Answered by Anonymous
14

Answer:

length \:  \alpha  \: e {}^{2}  \div 4\pi \: e. \\ length(l) =  (c) {}^{a} (g) {}^{b} (e {}^{2}   \div 4\pi \: e.) {}^{c}  \\ where \\ c = speed \: of \: light \\ g = constant \\ dimensions \: of \\ l = (l) \\ c =( lt {}^{ - } ) \\ g = (m {}^{ - 1} l {}^{3} t {}^{ - 2} ) \\ e {}^{2}  \div 4\pi \: e. = (ml {}^{3} t {}^{ - 2} )

(m {}^{0} l {}^{1} t {}^{0} )=( lt {}^{ - } ) {}^{a} (m {}^{ - 1} l {}^{3} t {}^{ - 2}) {}^{b} (ml {}^{3} t {}^{ - 2} ) {}^{c}  \\ comparing \: on \: both \: sides \\  =  &gt; a+3b+3c=1..EQ1\\=&gt;-b+c=0\\=&gt;b=c...EQ2\\=&gt;-a-2b-2c=0\\=&gt;a+2b+2c=0...EQ3\\subtracting\: EQ3\: &amp; \:EQ1\\=&gt;a+3b+3c-a-2b-2c=1-0\\=&gt;b+c=1...EQ4\\=&gt;sub \:EQ2\: in\:EQ4\\=&gt;b+b=1\\2b=1\\=&gt;b=1/2\\sub\:b=1/2\:in\:EQ4\\=&gt;1/2+c=1\\=&gt;c=1-1/2\\=&gt;c=2-1/2\\=&gt;c=1/2\\sub\: c \:&amp;\:b \:in\:EQ3\\=&gt;a+2(1/2)+2(1/2)=0\\=&gt;a+1+1=0\\=&gt;a=-2

Similar questions