Math, asked by Rose08, 5 months ago

Heyo! ʕ´•ᴥ•`ʔ

If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that 1/p² = 1/a² + 1/b².

➹ No spams.
➹ Need a quality answer! :)​


pnihasika28: hii
pnihasika28: rose
pnihasika28: delete my all questions

Answers

Answered by Rythm14
166

We know,

\sf Equation \: of \: line \:  making \: intercepts \: on \: x \: and \: y-axis,

= x/a + y/b = 1

Comparing with Ax + By + C = 0,

A = 1/x

B = 1/b

C = -1

Also,

\sf Perpendicular \: Distance \: of \: line \: Ax + By + C = 0 \: from \: the \: point \: (x,y),

D = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2+b^2} }

Where,

(x₁, y₁) = (0,0)  (Given)

D = p (Given)

A = 1/x

B = 1/b

C = -1

Substituting values,

\sf D = \dfrac{|Ax_1 + By_1 + C|}{\sqrt{A^2+b^2}} \\ \\ \sf p = \dfrac{|\frac{1}{a} \times 0 + \frac{1}{b} \times 0 + (-1)|}{\sqrt{(\frac{1}{a})^2+(\frac{1}{b})^2}} \\ \\ \sf p = \dfrac{|-1|}{\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}} \\ \\ \sf p = \dfrac{1}{\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}}

Squaring both sides,

\sf p^2 = \dfrac{1}{\frac{1}{a^2}+\frac{1}{b^2}}

Taking reciprocal,

\frac{1}{p^2} = \frac{1}{a^2}+\frac{1}{b^2}

Hence proved.


prince5132: Nice !!
EliteSoul: Great
ButterFliee: Great!
TheMoonlìghtPhoenix: Marvellous!
Rythm14: Thank you! ^-^
Cosmique: Splendid <3
Rythm14: Thank you! ;)
QueenOfStars: Astounding sistah! :D
Rythm14: Thank you!! ❤
QueenOfStars: Ya deserve it! :)
Answered by Rubellite
82

Given that,

the intercepts are a and b.

Therefore, equation of the line is

\displaystyle{\sf{ \dfrac{x}{a} + \frac{x}{b} = 1.}}

And the perpendicular distance (d) of the line\displaystyle{\sf{ax + by + c = 0}} from a point \displaystyle{\sf{(x_1 , y_1)}} is given by

\displaystyle{\boxed{\sf{\red{ d\:=\: \frac{|Ax_1 + By_1 + C|}{ \sqrt{A^{2} + B^{2}}}}}}}

After that,

\displaystyle{\sf{ \dfrac{x}{a} + \dfrac{x}{b} = 1.}}

  • Compare it with \displaystyle{\sf{ax + by + c = 0}}

\displaystyle{\sf{ \dfrac{1}{a}x + \dfrac{1}{b}y - 1 = 0}}

Therefore, a = \displaystyle{\sf{ \frac{1}{a}}}, b = \displaystyle{\sf{ \frac{1}{b}}}, c = \displaystyle{\sf{ -1}}

Again, the distance from origin (0, 0) to the line \displaystyle{\sf{ \dfrac{x}{a} + \dfrac{x}{b} = 1.}} is p.

So, distance (d) = p &\displaystyle{\sf{x_1 = 0\:,\: y_1 =0}}

  • Substitute the values in \displaystyle{\sf{ d\:=\: \dfrac{|Ax_1 + By_1 + C|}{ \sqrt{A^{2} + B^{2}}}}} and simplify the equation.

:\implies{\sf{p\:=\: \dfrac{ \bigg| (0) \dfrac{1}{a} + (0) \dfrac{1}{b} - 1 \bigg|}{ \sqrt{ \dfrac{1}{a}^{2} + \dfrac{1}{b}^{2}}}}}

:\implies{\sf{p\:=\: \dfrac{ | 0+ 0 -1|}{ \sqrt{ (\dfrac{1}{a})^{2} + (\dfrac{1}{b})^{2}}}}}

:\implies{\sf{p\:=\: \dfrac{ | -1|}{ \sqrt{ \dfrac{1}{a^{2}}+ \dfrac{1}{b^{2}}}}}}

:\implies{\sf{p\:=\: \dfrac{ 1}{ \sqrt{ \dfrac{1}{a^{2}}+ \dfrac{1}{b^{2}}}}}}

:\implies{\sf{ \dfrac{1}{p}\:=\: \sqrt{ \dfrac{1}{a^{2}}+ \dfrac{1}{b^{2}}}}}

  • Squaring both the sides.

:\implies{\sf{ \bigg( \dfrac{1}{p} \bigg)^{2}\:=\: \bigg( \sqrt{ \dfrac{1}{a^{2}}+ \dfrac{1}{b^{2}}} \bigg)^{2}}}

:\large\implies{\boxed{\bf{\purple{ \dfrac{1}{p^{2}} = \dfrac{1}{a^{2}} + \dfrac{1}{b^{2}}}}}}

Hence, proved!

And we are done! :D

__________________________


ItzArchimedes: Splendid !!
prince5132: Superb !!!
pandaXop: ☃️Niceee
EliteSoul: Great
ButterFliee: Great!
TheMoonlìghtPhoenix: Marvellous!
Cosmique: Superb <3
Anonymous: Splendid!
QueenOfStars: Exemplary one! :D
Rubellite: Thank y'all! :)
Similar questions