Math, asked by llAbdulkadarll, 6 months ago

Heyya ❤

Just a simple question :

☞ Show that the points A ( 7 , 10 ) , B ( -2 , 5 ) , C ( 3, -4 ) are the vertices of a right angled triangle.

No spam ☁

@ llAbdulkadarll​

Answers

Answered by Anonymous
10

Given :

  • A =  ( 7 , 10 ) , B = ( -2 , 5 )\:and\:C = ( 3 , -4 )

According to the question :

Here A =  ( 7 , 10 ) , B = ( -2 , 5 )\:and\:C = ( 3 , -4 )

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

AB =  \sqrt {( x_2 - x_1 )² + ( y_2 - y_1 )²}

 \sqrt {( - 2 - 7 )² + ( 5 - 10 )²}

 \sqrt {( -9 )² + ( -5 )²}

 \sqrt {( 81 + 25 )}

 \sqrt {( 106 )}

AB² = 106 ...... [ 1 st equation ]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

BC =  \sqrt {( x_2 - x_1 )² + ( y_2 - y_1 )²}

 \sqrt {( 3 - ( -2 ) )² + ( - 4 - 5 )²}

 \sqrt {( 5 )² + ( - 9 )²}

 \sqrt {25+ 81}

 \sqrt {106}

BC² = 106 ...... [ 2nd Equation ]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

AC =  \sqrt {( x_2 - x_1 )² + ( y_2 - y_1 )²}

 \sqrt {( 3 - 7 )² + ( - 4 - 10)²}

 \sqrt {( - 4 )² + ( - 14 )²}

 \sqrt {16 + 196 }

 \sqrt {212}

AC² = 212 ...... [ 3rd Equation ]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

From [ 1 , 2 and 3 equations ] We get :

➳ AB² + BC²

➳ 106 + 106

212 = AC²

Since, AB² + BC² = AC²

∴ ΔABC is a right angled triangle, right angled at B.

So, It's Done !!


prince5132: Osm !!!
Answered by Anonymous
57

\underline{\bf{ \: Given:-}}

  • Points A(7,10), B(-2,5) and C(3,-4)

\underline{\bf{ \: To \: Find:-}}

  • Given points are the vertices of right angled Triangle.

\underline{\bf{ \: Solution:-}}

Here,

we, know that

 \large{\boxed{\sf Distance \: Formula =  \sqrt{ {(x_{2} - x_{1})}^{2} +  {( y_{2} - y_{1} ) }^{2} } \: }}

So,

 \ast\sf AB =  \sqrt{ {(x_{2} - x_{1})}^{2} +  {( y_{2} - y_{1} ) }^{2} } \\

where,

  • \sf x_1 = 7
  • \sf x_2 = -2
  • \sf y_1 = 10
  • \sf y_2 = 5

So,

 \dashrightarrow\sf AB =  \sqrt{ {( - 2 -7)}^{2} +  {( 5 - 10) }^{2} } \\  \\

 \dashrightarrow\sf AB =  \sqrt{ {( -9)}^{2} +  {(- 5) }^{2} } \\  \\

 \dashrightarrow\sf AB =  \sqrt{(81)+  (25)} \\  \\

 \dashrightarrow\sf AB =  \sqrt{81+  25} \\  \\

 \dashrightarrow\sf AB =  \sqrt{106} \\  \\

\dashrightarrow\sf {AB}^{2}  =  106  \huge{......1}\\  \\

_____________________________

Now,

\ast\sf BC =  \sqrt{ {(x_{2} - x_{1})}^{2} +  {( y_{2} - y_{1} ) }^{2} } \\

where,

  • \sf x_1 = -2
  • \sf x_2 = 3
  • \sf y_1 = 5
  • \sf y_2 = -4

So,

\dashrightarrow\sf BC =  \sqrt{ {(3 -( - 2))}^{2} +  {( - 4  - 5) }^{2} } \\  \\

\dashrightarrow\sf BC =  \sqrt{ {(3  + 2)}^{2} +  {( - 4  - 5) }^{2} } \\  \\

\dashrightarrow\sf BC =  \sqrt{ {(5)}^{2} +  {( -9) }^{2} } \\  \\

\dashrightarrow\sf BC =  \sqrt{25 + 81 } \\  \\

\dashrightarrow\sf BC =  \sqrt{106} \\  \\

\dashrightarrow\sf {BC}^{2}  =  106 \huge{.......2} \\  \\

_____________________________

\ast\sf AC =  \sqrt{ {(x_{2} - x_{1})}^{2} +  {( y_{2} - y_{1} ) }^{2} } \\

where,

  • \sf x_1 = 7
  • \sf x_2 = 3
  • \sf y_1 = 10
  • \sf y_2 = -4

So,

\dashrightarrow\sf AC =  \sqrt{ {(3- 7)}^{2} +  {( - 4 - 10) }^{2} } \\  \\

\dashrightarrow\sf AC =  \sqrt{ {( - 4)}^{2} +  {( -14) }^{2} } \\  \\

\dashrightarrow\sf AC =  \sqrt{16 + 196} \\  \\

\dashrightarrow\sf AC =  \sqrt{212} \\  \\

\dashrightarrow\sf {AC}^{2}  =212 \huge{.......3} \\  \\

_____________________________

we, know

\huge{ \boxed{\bf{H^2 = P^2 + B^2}}}

So,

 :\to\large{\sf {AC}^2 = {AB}^2 + {BC}^2}

where,

  • AC² = 212
  • AB² = 106
  • BC² = 106

[FROM EQ. 1,2 AND 3]

 :\to\large{\sf {AC}^2 = {AB}^2 + {BC}^2} \\  \\

 :\to\large{\sf 212= 106 + 106} \\  \\

 :\to\large{\sf 212= 212} \\  \\

Here,

Square of Hypotenuse is equal to the sum of square of other two sides.

Hence, Given Vertices are points of right angled Triangle.

Similar questions