Heyyy guys....
answer this one!!!
#HAVE A LOOK AT THE ATTACHMENT...!!!
Attachments:
Answers
Answered by
18
Answer:
Proved below.
Step-by-step-explanation:
Hence proved.
Answered by
3
(-sinA/cosA)^2 = (-tanA)^2 =tan^2 A.
STEP BY STEP EXPLANATION:-
(1+tan^2A)/(1+cot^2A) = sec^2A/cosec^2A
=(1/cos^2A)/(1/sin^2A)=sin^2A/cos^2A
= tan^2A.
Again {(1-tanA)/(1-cotA)}^2
=[{1-(sinA/cosA)}/{1-(cosA/sinA)}]^2
=[{(cosA-sinA)/cosA}/
{(sinA-cosA)/sinA}]^2
={sinA(cosA-sinA)/cosA(sinA-cosA)}^2
={-sinA(sinA-cosA)/cosA(sinA-cosA)}^2
=(-sinA/cosA)^2 = (-tanA)^2 =tan^2 A.
______________________
Hope it is clear!
Similar questions