Math, asked by AkshaSingh, 10 months ago

Heyyy guys....
answer this one!!!
#HAVE A LOOK AT THE ATTACHMENT...!!! ​

Attachments:

Answers

Answered by abhi569
18

Answer:

Proved below.

Step-by-step-explanation:

 \implies \bigg( \dfrac{1 +  \tan {}^{2} ( \alpha ) }{1 +  \cot {}^{2} ( \alpha ) }  \bigg) \\  \\  \\  \implies \bigg( \dfrac{1 +  \tan {}^{2} ( \alpha ) }{1 +  \frac{1}{ \tan {}^{2} ( \alpha ) } }  \bigg) \\  \\  \\  \implies  \bigg( \dfrac{1 +  { \tan {}^{2} ( \alpha ) }^{} }{  \frac{\tan {}^{2}  ( \alpha ) +  1}{ \tan {}^{2} ( \alpha ) } }  \bigg) \\  \\  \\  \implies  \tan {}^{2} ( \alpha )

  \implies ( \tan( \alpha ) ) {}^{2}  \\  \\   \implies \bigg( \dfrac{1}{ \frac{1}{ \tan {}^{} ( \alpha ) } }   \bigg) {}^{2} \\  \\  \\  \implies  \bigg( \dfrac{1 -  \tan( \alpha ) }{ \frac{1 -  \tan( \alpha ) }{ \tan( \alpha ) } }  \bigg) {}^{2}  \\  \\  \\  \implies  \bigg( \dfrac{1 -  \tan( \alpha ) }{ \frac{1}{ \tan( \alpha )  } -  \frac{ \tan( \alpha ) }{ \tan( \alpha ) }  }  \bigg) {}^{2}  \\  \\  \\  \implies \bigg(\dfrac{1 -  \tan( \alpha ) }{ \cot( \alpha )  - 1}  \bigg) {}^{2}  \\  \\  \\  \implies  \bigg( \dfrac{1 -  \tan( \alpha ) }{1 -  \cot( \alpha ) }  \bigg) {}^{2}

Hence proved.

Answered by Anonymous
3

\huge\underline\mathfrak\pink{Answer:-}

(-sinA/cosA)^2 = (-tanA)^2 =tan^2 A.

STEP BY STEP EXPLANATION:-

(1+tan^2A)/(1+cot^2A) = sec^2A/cosec^2A

=(1/cos^2A)/(1/sin^2A)=sin^2A/cos^2A

= tan^2A.

Again {(1-tanA)/(1-cotA)}^2

=[{1-(sinA/cosA)}/{1-(cosA/sinA)}]^2

=[{(cosA-sinA)/cosA}/

{(sinA-cosA)/sinA}]^2

={sinA(cosA-sinA)/cosA(sinA-cosA)}^2

={-sinA(sinA-cosA)/cosA(sinA-cosA)}^2

=(-sinA/cosA)^2 = (-tanA)^2 =tan^2 A.

______________________

Hope it is clear!

Similar questions