Physics, asked by Arush456, 2 months ago

Hi Actually I'm facing a problem that I knoe all the values but whenever I'm going to solve it seems that I'm unable to find out the answer. Can you help me out?

Here, values :-

T=10\ N
m_0=10^{-2}\ kg\,m^{-1}
a=9\times10^{-3}\ kg\,m^{-2}

When :+

\longrightarrow \dfrac{dx}{dt}=\sqrt{\dfrac{T}{m_0+ax}}

Note : solve this using integrate! ​

Answers

Answered by AureliaAirellee
1

\Large{\underbrace{\sf{\purple{Required\:Answer:}}}}

Here,we are given :-

  •  \sf \dfrac{dx}{dt}=\sqrt{\dfrac{T}{m_0+ax}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\sf{\implies \red { \dfrac{dx}{dt}=\sqrt{\dfrac{T}{m_0+ax}}}}

\sf{\implies dt=\sqrt{\dfrac{m_0+ax}{T}}\ dx}\\

Integrating:-

\displaystyle\sf{\implies\int\limits_0^tdt=\int\limits_0^{10}\sqrt{\dfrac{m_0+ax}{T}}\ dx}\\

\displaystyle\sf{\implies t=\dfrac{1}{a\sqrt T}\cdot\dfrac{2}{3}\left[(m_0+ax)^{\frac{3}{2}}\right]_0^{10}}\\

Now, we are given some values.

  • \sf{T=10\ N}
  • \sf{m_0=10^{-2}\ kg\,m^{-1}}
  • \sf{a=9\times10^{-3}\ kg\,m^{-2}}

_____________________________________

  • So, we have to put the above values for getting the proper solution,.Let's do this!

\displaystyle\sf{\implies t=\dfrac{1}{9\times10^{-3}\sqrt{100}}\cdot\dfrac{2}{3}\left[\left(10^{-2}+(9\times10^{-3})x\right)^{\frac{3}{2}}\right]_0^{10}}\\\\

\displaystyle\sf{\implies t=\dfrac{200}{27}\left(10^{-\dfrac{3}{2}}-10^{-3}\right)}\\\\

\displaystyle\sf{\implies\red{\underline{\underline{t=0.2268\ s}}}}\\\\

Similar questions