Math, asked by sreekeerthi321, 3 months ago

Hi all need the answers for following questions

Attachments:

Answers

Answered by Anonymous
27

Solution 1

Framing an equation we get,

 \longrightarrow \tt \: 5p \degree + (3p - 20)\degree = 180\degree \\  \\  \\  \longrightarrow \tt 5p \degree + 3p\degree - 20\degree = 180\degree  \\\\\\ \longrightarrow \tt 5p\degree + 3p\degree = 180\degree + 20\degree \\  \\  \\  \longrightarrow \tt 5p\degree + 3p\degree = 200\degree \\  \\  \\  \longrightarrow \tt 8p\degree = 200\degree \:  \:  \\  \\  \\   \longrightarrow \tt p =   \cancel\frac{200}{8} \\  \\  \\  \longrightarrow { \blue{ \boxed{ \frak{p = 25\degree }} \star}} \:  \:

  • Henceforth the value of P is 25°

Solution 2]

 \longrightarrow \tt (33 - q)\degree + (3q + 5)\degree = 90\degree \\  \\  \\  \longrightarrow \tt 33 -  q+ 3q + 5 = 90\degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \tt 38 + 2q = 90\degree   \\  \\  \\  \longrightarrow \tt 2q = 90 - 38 \\  \\  \\  \longrightarrow \tt 2q = 52\degree  \\  \\  \\  \longrightarrow \tt q =   \cancel\frac{52}{2}    \\  \\  \\  \longrightarrow \tt { \blue{ \boxed{ \frak{q = 26 \degree }} \star}} \:  \:

{ \blue{ \boxed{ \tt{Question \: 3 }}}}

Given:

  • In the given figure P||Q

To Find:

  • The unknown angles in the figure

Solution :

Now,

  • Let's use suitable properties and find the angles

 \leadsto \tt 130\degree + \angle e = 180\degree[adjacent \: angles] \\  \\  \\  \leadsto \tt \: \angle e = 180\degree - 130\degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \leadsto \tt \: \angle e = { \pink{ \boxed{ \tt{50}}\degree}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the measure of angle e is 50°

 \leadsto \tt\angle e = \angle f  \: [vertically \: opposite \: angles]\\  \\  \\  \leadsto \tt \: \angle 50\degree = \angle f   \\  \\  \\  \leadsto \tt\angle f = { \pink{ \boxed{ \tt{50}}\degree}}

  • Henceforth the measure of angle f is 50°

 \leadsto \tt\angle f = \angle a[opposite \: interior \: angles] \\  \\  \\  \leadsto \tt\angle 50 \degree = \angle a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \leadsto \tt\angle a = { \pink{ \boxed{ \tt{50}}\degree}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the measure of angle a is 50°

 \leadsto \tt\angle a = \angle c  \: [vertically \: opposite \: angles]\\  \\  \\  \leadsto \tt \: \angle 50\degree = \angle c \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \leadsto \tt\angle c = { \pink{ \boxed{ \tt{50}}\degree}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the Measure of angle c is 50°

\leadsto \tt \: \angle a \degree + \angle d = 180\degree[adjecent \: angles] \\  \\  \\  \leadsto \tt \: \angle 50 + \angle d = 180\degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\  \leadsto \tt \:\angle d = 180\degree - 50\degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\  \leadsto \tt \: \angle d= { \pink{ \boxed{ \tt{130}}\degree}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the measure of angle d is 130°

 \leadsto \tt\angle d = \angle b  \: [vertically \: opposite \: angles]\\  \\  \\  \leadsto \tt \: \angle 130\degree = \angle b \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \leadsto \tt\angle b = { \pink{ \boxed{ \tt{130}}\degree}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the measure of angle b is 130°

{ \blue{ \boxed{ \tt{Question \: 4 }}}}

A]

Given:

  • ∠ABC measures 70°

To Find:

  • the measure of ∠x

Solution:

Using the identity

  • Corresponding angles are equal

 \leadsto \tt\angle \: b = \angle g \\  \\  \\  \leadsto \tt\angle 70\degree = \angle g \\  \\  \\  \leadsto \tt\angle g = { \pink{ \boxed{ \tt{70}}\degree}}

  • Henceforth the measure of angle G is 70°

 \leadsto \tt\angle g = \angle x  \:  \:  \: \\  \\  \\  \leadsto \tt\angle 70\degree = \angle x \\  \\  \\  \leadsto \tt\angle x = { \pink{ \boxed{ \tt{70}}\degree}}

  • Therefore the measure of angle x is 70°

  • Due to word limit I couldn't post the whole answer so some of the parts are in the attachment!

[ Note: Solution 4 part b is in the attachment]

Attachments:
Similar questions