Math, asked by kaurqueen, 1 year ago

Hi answers fast....


plz urgent !!
no wrong answee

Attachments:

Answers

Answered by Muskan1101
7
Here's your answer!!

________________________________

 = > \frac{4}{2 + \sqrt{3} + \sqrt{7} }

We have to rationalise it ,

 = > \frac{4}{(2 + \sqrt{3} )+ \sqrt{7} } \times \frac{(2 + \sqrt{3} ) - \sqrt{7} }{(2 + \sqrt{3} ) - \sqrt{7} }

 = > \frac{4((2 + \sqrt{3}) - \sqrt{7} ) }{ {(2 + \sqrt{3}) }^{2} - {(7)}^{2} }

 = > \frac{8 + 4 \sqrt{3} - 4 \sqrt{7} }{4 + 3 + 4 \sqrt{3} - 7 }

 = > \frac{8 + 4 \sqrt{3} - 4 \sqrt{7} }{7 - 7 + 4 \sqrt{3} }

7 \: and \: - 7 \: get \: cancelled

 = > \frac{8 + 4 \sqrt{3} - 4 \sqrt{7} }{4 \sqrt{3} }

We can see that 4 is common here,so we took 4 as common .

 = > \frac{4(2 + \sqrt{3} - \sqrt{7} )}{4( \sqrt{3}) }

 4 \: and \: 4 \: get \: cancelled

 = > \frac{2 + \sqrt{3} - \sqrt{7} }{ \sqrt{3} }

By multiplying it with √3 ,we got ,

 = > \frac{2 + \sqrt{3} - \sqrt{7} }{ \sqrt{3} } \times \frac{ \sqrt{3} }{ \sqrt{3} }

 = > \frac{2 \sqrt{3} + 3 - \sqrt{21} }{3}

___________________________________

Hope it helps you!! :)
Attachments:

kaurqueen: so muxh
kaurqueen: best brainlist
Muskan1101: Welcome :)
kaurqueen: answer one more questions I have asked
Muskan1101: ok
kaurqueen: hm
kaurqueen: answerkrdo yrrr
kaurqueen: plzzzz
kaurqueen: plzzzxxxz
kaurqueen: answers krdo
Similar questions